
ARENBERG DOCTORAL SCHOOL
Faculty of Engineering Science

Authorization middleware for
Software as a Service

Maarten Decat

Dissertation presented in partial
fulfillment of the requirements for the

degree of Doctor in
Engineering Science:
Computer Science

January 2016

Supervisor:
Prof. dr. ir. W. Joosen

Authorization middleware for
Software as a Service

Maarten DECAT

Examination committee:
Prof. dr. A. Bultheel, chair
Prof. dr. ir. W. Joosen, supervisor
Dr. B. Lagaisse
Prof. dr. ir. F. Piessens
Dr. E. Truyen
Prof. dr. B. Crispo
Prof. dr. ir. B. Preneel
Prof. dr. ir. F. De Turck
(University of Ghent)

Dissertation presented in partial
fulfillment of the requirements for
the degree of Doctor in
Engineering Science:
Computer Science

January 2016

© 2016 KU Leuven – Faculty of Engineering Science
Uitgegeven in eigen beheer, Maarten Decat, Celestijnenlaan 200A box 2402, B-3001 Heverlee (Belgium)

Alle rechten voorbehouden. Niets uit dezeuitgavemagwordenvermenigvuldigden/of openbaar gemaaktwordendoor
middel van druk, fotokopie, microfilm, elektronisch of op welke andere wijze ook zonder voorafgaande schriftelijke
toestemming van de uitgever.

All rights reserved. Nopart of the publicationmaybe reproduced in any formbyprint, photoprint,microfilm, electronic
or any other means without written permission from the publisher.

Voor Opa. Je zou zo trots geweest zijn.

Acknowledgments

While this thesis carries my name, it would not have been possible without the
support, feedback and guidance of the numerous wonderful people around me. To
these people, I want to express my sincere gratitude.

First of all, I want to thankmy supervisorWouter Joosen. If I would have to summarize
my last years at DistriNet in one word, it would be “opportunities” and this is largely
due to the efforts of Wouter. Because of him, I have joined DistriNet, worked with
some of the most intelligent people I have ever met, discussed my research with
industry, visited Canada, China and the USA and dug into entrepreneurship, all
within an atmosphere of professionalism. Not all PhD researchers are granted these
opportunities, for which I am grateful.

Secondly, I want to thank my coach Bert Lagaisse. He has guided me throughout this
whole journey and has lifted my work to the next level. In addition, he has introduced
me into the wonderful world of Burger King, Quick, KFC, Starbucks, Burgerfolie and
many more. Thank you for the very enjoyable collaboration, this thesis is also your
accomplishment.

Next, I want to thank the other members of my jury for the interesting feedback and
insights on my work: Adhemar Bultheel, Frank Piessens, Eddy Truyen, Bruno Crispo,
Bart Preneel and Filip De Turck. Also many thanks to the others who have spent time
on proof-reading this thesis.

I also want to thank my many great colleagues at DistriNet. It truly is an awesome
group of people, leading to inspiring discussions and fun DRADS days. A special
thanks goes to Jasper Bogaerts, thank you for a rewarding collaboration the last
years, which amongst others resulted into the Amusa middleware. A second special
thanks goes to the members of Lantam for the often-intense-but-always-constructive
meetings and discussions. A third special thanks goes to my many cool office mates of
the last years such as Philippe, Kim, Stefan, Wouter, Bart, Bert, Jasper, Arnaud, Jasper,
Ansar and Jan. Coming to work would not have been as much fun without you. A

i

ii ACKNOWLEDGMENTS

final special thanks goes to the administrative and technical staff of the department,
you have made my life much easier.

The last years I have also taken some steps into entrepreneurship with Battle of
Talents and SpaceBillboard. While these projects in hindsight look like baby steps,
the effort at the time was substantial and it would not have been as enjoyable without
my partners in crime Tjorven, Jeroen, Sofie and Piet. Buzzword bingo for the win!

Next I would like to express my gratitude towards my parents, grandparents, family
and family in law. You have always supported me in everything I do, have sparked
my curiosity, have taught me how to live. I would not be writing this if it was not for
all of you, for which I am eternally grateful.

And last but definitely not least, I want to thank my wife Kathleen. Thank you for
your patience and support in all my endeavors, it is not easy to live with a computer
scientist. Thank you for making me a better person, I hope I can do the same for you.

– Maarten Decat

This research is partially funded by the Agency for Innovation by Science and
Technology in Flanders (IWT), by the Research Fund KU Leuven and by the EU
FP7 project NESSoS. With the financial support from the Prevention of and Fight
against Crime Programme of the European Union (B-CCENTRE). With the support of
the iMinds Security Department, the ICON programme and the Adaptive Distributed
Software (ADDIS) project.

Abstract

This thesis focuses on access control for Software-as-a-Service (SaaS) applications.
Access control is the part of security that aims to constrain which users can access
which data in an application by enforcing access rules. SaaS makes up a novel and
promising type of applications in which a customer organization rents access to an
entire application hosted in the cloud for use through a web browser.

Because SaaS applications are typically designed to be used by multiple customer
organizations at the same time, application-level access control is of big importance
to them. However, SaaS applications also pose new and specific challenges for access
control. For example, SaaS access control should enable the provider of the application
to control which of its customers can access which parts of the application and should
enable these customers to control which of their employees can access which part of
their data in the application. In addition, while this functionality by itself is non-trivial,
SaaS access control is further complicated by the fact that every customer wants to
express its access rules in terms of its own organizational structure, by the fact that
SaaS applications are offered to a large amount of customers, and by the fact that
these customers do not necessarily trust the provider completely.

As such, the goal of this thesis is to design access control techniques for SaaS
applications that are able to cope with these challenges. In addition, these techniques
should impose low performance overhead on the application, should be easy to use
and should be easy to integrate into a SaaS application.

In this regard, this thesis provides four distinct contributions: (i) a reusablemiddleware
for efficient access control management of SaaS applications, (ii) the concept of
federated authorization, which externalizes access control from a SaaS application,
(iii) the technique of policy federation, which improves the performance of federated
authorization, and (iv) a technique to enable access rules to be securely evaluated in
parallel to support large amounts of requests per second.

For each of these contributions, we build upon the state-of-the-art technologies of
policy-based access control, attribute-based access control and tree-structured policies.

iii

iv ABSTRACT

In addition, these contributions have been validated in four distinct case studies
of realistic SaaS applications in the domains of automated document processing,
automated workforce management and e-health. Finally, we have systematically
evaluated these contributions in terms of performance and engineering overhead
based on extensive prototypes.

Beknopte samenvatting

Deze thesis behandelt toegangscontrole voor zogenaamde Software-as-a-Service
(SaaS) applicaties. Toegangscontrole is het deel van beveiliging dat door het toepassen
van toegangsregels bepaalt tot welke gegevens gebruikers toegang hebben. SaaS vormt
een nieuw en veelbelovend type van applicaties waarbij een organisatie toegang huurt
tot een gehele applicatie die aangeboden wordt vanuit de cloud en gebruikt wordt
met een web browser.

Omdat SaaS applicaties typisch ontworpen worden om door meerdere klanten
tegelijkertijd gebruikt te worden is toegangscontrole op het niveau van de applicatie
van groot belang. SaaS applicaties bieden echter ook nieuwe en specifieke uitdagingen
voor toegangscontrole. Zo moet toegangscontrole voor SaaS de aanbieder van een
applicatie toelaten om te controleren welke van zijn klanten toegang hebben tot
welk deel van de applicatie en moet toegangscontrole deze klanten op hun beurt
toelaten om te controleren welke van hun werknemers toegang hebben tot welk
deel van hun gegevens in deze applicatie. Hoewel deze functionaliteit op zich al niet
triviaal is, wordt toegangscontrole voor SaaS nog complexer doordat elke klant zijn
toegangsregels wilt uitdrukken in termen van de structuur van zijn eigen organisatie.
Bovendien worden SaaS applicaties meestal aangeboden aan een groot aantal klanten
en vertrouwen deze klanten de aanbieder van de applicatie mogelijk niet volledig.

Het doel van deze thesis is daarom toegangscontroletechnieken voor SaaS applicaties
te ontwerpen die aan deze uitdagingen voldoen. Deze technieken mogen daarenboven
slechts weinig invloed hebben op de performantie van de SaaS applicatie, moeten
gemakkelijk te gebruiken zijn en moeten gemakkelijk te integreren zijn in een SaaS
applicatie.

Binnen deze context biedt deze thesis vier contributies: (i) een herbruikbare
middleware voor efficiënt beheer van toegangscontrole voor SaaS applicaties, (ii) de
techniek van gefedereerde autorisatie, dewelke toegangscontrole externaliseert vanuit
een SaaS applicatie, (iii) de techniek van policy federation, dewelke de performantie van
gefedereerde autorisatie verbetert, en (iv) een techniek om meerdere toegangsregels

v

vi BEKNOPTE SAMENVATTING

zonder fouten parallel te evalueren om zo een groot aantal evaluaties per seconde te
bereiken.

Voor elke van deze contributies bouwen we op de recente technologieën van policy-
gebaseerde toegangscontrole, attribuutgebaseerde toegangscontrole en boomgestruc-
tureerde toegangsregels. Onze contributies zijn bovendien gevalideerd in vier
uiteenlopende gevalanalyses van realistische SaaS applicaties in de domeinen van
geautomatiseerd documentbeheer, geautomatiseerd personeelsbeheer en e-health.
Daarnaast hebben we de performantie van deze contributies systematisch geëvalueerd
op basis van uitgebreide prototypes.

Abbreviations

a Action. Employed in Chapter 5.
ABAC Attribute-based access control

DAC Discretionary access control

e Environment. Employed in Chapter 5.
EBAC Entity-based access control

IaaS Infrastructure as a Service

LBAC Lattice-based access control

MAC Mandatory access control

PaaS Platform as a Service
PDP Policy decision point
PEP Policy enforcement point
PIP Policy information point
PKI Public Key Infrastructure

r Resource. Employed in Chapter 5.
RBAC Role-based access control
ReBAC Relationship-based access control
RPDP Remote policy decision point

s Subject. Employed in Chapter 5.
SaaS Sofware as a Service

UCON Usage control

vii

Glossary

Access control The part of security that constrains the actions that subjects can
perform on the resources in an application. Access control is generally
divided into authentication, authorization and audit.

Access control
policy

A software artifact in which access rules are declaratively expressed
independently of how they are enforced.

Action An operation performed on a resource in an application by a subject,
e.g., reading a file or updating a database entry.

Attribute A key-value property of a subject, a resource, an action or the
environment, e.g., the roles of the subject, the owner of a resource,
the identifier of an action or the current time.

Audit The part of access control that checks the past actions that
authenticated subjects have performed on the resources in an
application and corrects any unauthorized actions.

Authentication The part of access control that ensures that the subject is who he,
she or it claims to be, for example by verifying the combination of a
username and password.

Authorization The part of access control that checkswhether an authenticated subject
is permitted to perform the requested action on the requested resource
by evaluating access rules and blocking the action if not.

Federation An organizational structure in which multiple organizations have
set up collaboration agreements, but do not necessarily trust each
other completely and remain separate domains in terms of security
and administration.

viii

ABBREVIATIONS ix

Obligation A statement of an operation that must be executed in conjunction
with enforcing an access decision. For example, such an obligation
can specify that a user should agree to terms and conditions before
being granted access, that the system should write out a log of the
access decision or that an attribute should be updated.

Policy See access control policy.

Policy-based ac-
cess control

An approach to access control in which the specification of the
access rules is separated from the mechanisms that enforce them by
expressing the rules in declarative access control policies.

Resource An entity on which actions can be performed in an application, e.g.,
a file, a database, a database entry or a socket.

SaaS See Software-as-a-Service.

Software-as-a-
Service

One of the service models of cloud computing. With Software as
a Service, tenants rent access to an entire application hosted by a
provider for use through a thin client such as a web browser. Two
well-known SaaS offerings are Google Drive and Salesforce.

Subject An entity that can perform actions on the resources in an application,
e.g., a human user, a remote machine on the internet or a process
acting in name of a user.

Tenant An organization that rents access to a cloud application. Every tenant
represents and manages multiple end-users.

Contents

Contents xi

List of Figures xix

List of Tables xxv

1 Introduction 1

1.1 Access control and Software as a Service 2

1.1.1 Access control . 2

1.1.2 Software as a Service . 3

1.1.3 The need for security and access control in SaaS 6

1.2 Challenges for access control in SaaS 6

1.2.1 Functional challenges . 6

1.2.2 Non-functional challenges . 7

1.2.3 Additional concerns . 8

1.3 Goals of this thesis . 9

1.4 Research approach . 11

1.4.1 Case studies . 11

1.4.2 Supporting technologies . 12

1.4.3 Research prototypes . 14

xi

xii CONTENTS

1.5 Contributions . 14

1.6 Outline . 16

2 Background 17

2.1 Access control . 17

2.2 Access control models . 19

2.2.1 The basics: the access control matrix 19

2.2.2 Who can assign permissions 20

2.2.3 How permissions are assigned 20

2.2.4 Beyond permissions: executing operations with an access
decision . 25

2.3 Policy-based access control . 26

2.3.1 Policy languages . 28

2.3.2 The reference architecture for policy-based access control
systems . 31

2.4 Federated access control . 33

2.4.1 Early techniques for federated access control: Kerberos and
the Public Key Infrastructure 34

2.4.2 Access control in grid computing 35

2.4.3 Federated access control in web applications 38

2.5 Performance of policy-based access control 42

2.6 Positioning of our contributions . 46

2.7 Conclusion . 48

3 Amusa: access control in a multi-tenant context 49

3.1 Introduction . 50

3.2 Problem statement . 51

3.2.1 Industrial case studies . 52

3.2.2 Problem illustration . 53

CONTENTS xiii

3.2.3 Resulting requirements . 55

3.3 The Amusa middleware . 55

3.3.1 Enabling technologies . 56

3.3.2 Amusa’s access control management 57

3.3.3 The middleware architecture of Amusa 63

3.3.4 How to integrate Amusa in an application 70

3.4 Evaluation . 72

3.4.1 Security . 73

3.4.2 Performance . 74

3.4.3 Integration effort . 79

3.5 Discussion . 80

3.6 Related work . 81

3.7 Conclusion . 83

4 Federated authorization 85

4.1 Introduction . 86

4.2 Motivation and problem illustration 88

4.2.1 Case study: a patient monitoring service 88

4.2.2 Resulting access control requirements 89

4.2.3 The need for federation authorization 91

4.3 Federated authorization . 92

4.3.1 Key features for supporting federated authorization 94

4.3.2 Generic middleware architecture 96

4.3.3 Extensions to current policy languages 99

4.4 Performance evaluation . 100

4.4.1 Test setup . 101

4.4.2 Results . 102

xiv CONTENTS

4.5 Discussion . 105

4.5.1 Trust implications . 105

4.5.2 Security implications . 106

4.5.3 Privacy implications . 106

4.5.4 Performance . 107

4.6 Validation of federated authorization in a wider context 107

4.6.1 Case study: a collaborative care platform 108

4.6.2 Access control requirements 109

4.6.3 The role of federated authorization 110

4.7 Outlook . 112

4.8 Conclusion . 114

5 Efficient federated evaluation of access control policies 115

5.1 Introduction . 115

5.2 Case study analysis: home patient monitoring 117

5.2.1 Summary of the case study 117

5.2.2 Access control policies from the case study 117

5.2.3 Problem statement and solution 121

5.3 Policy model . 122

5.3.1 Structure of a policy tree . 122

5.3.2 Evaluation of a policy tree . 124

5.4 Policy federation algorithm . 125

5.4.1 Overview . 125

5.4.2 Step 1: Normalization . 126

5.4.3 Step 2: Decomposition . 130

5.4.4 Step 3: Combination . 132

5.4.5 Discussion: policy equivalence 133

CONTENTS xv

5.5 Performance evaluation . 133

5.5.1 Middleware prototype . 135

5.5.2 Test set-up . 136

5.5.3 Results . 137

5.6 Discussion . 138

5.7 Related work . 140

5.8 Conclusion . 141

6 Concurrent evaluation of access control policies 143

6.1 Introduction . 144

6.2 Problem elaboration . 145

6.2.1 The need for concurrency and distribution 145

6.2.2 The need for concurrency control 146

6.2.3 The need for concurrency control at the level of policy evaluation 148

6.2.4 Requirements for concurrency control 149

6.3 Concurrency control . 149

6.3.1 Modeling history-based policies in current policy languages . 149

6.3.2 Tactics for concurrency control 151

6.3.3 Centralized coordinator . 153

6.3.4 Distributed coordinator . 155

6.3.5 Scaling out the attribute database 158

6.4 Evaluation . 158

6.4.1 Prototype and test set-up . 158

6.4.2 Latency overhead . 159

6.4.3 The impact of conflicts . 160

6.4.4 Scalability . 161

6.5 Discussion . 165

xvi CONTENTS

6.6 Conclusion . 168

7 Conclusion 169

7.1 Contributions . 169

7.2 Revisiting the challenges for SaaS access control 171

7.3 Future directions for policy-based access control 175

7.3.1 Investigating the semantical interface between policies and
applications . 176

7.3.2 Applying policies to database queries 177

7.3.3 Supporting tools and technologies 178

7.3.4 The link between authorization and audit 181

7.3.5 The complete picture: a view on policy-based access control . 181

7.4 Concluding thoughts . 183

A Example of an access control policy 185

B Extensions to XACML for federated authorization 189

B.1 Remote Policy Reference . 189

B.2 Obligation targets . 190

C Correctness of the policy transformations of Chapter 5 193

C.1 Combination algorithms . 193

C.1.1 PermitOverrides . 193

C.1.2 DenyOverrides . 194

C.1.3 FirstApplicable . 194

C.2 Truth tables of the policy transformations 195

C.2.1 Transformation T1 . 195

C.2.2 Transformation T2 . 195

C.2.3 Transformation T3 . 196

CONTENTS xvii

C.2.4 Transformation T4 . 196

C.2.5 Transformation T5 . 197

C.2.6 Transformation T6 . 197

C.2.7 Transformation T7 . 198

C.2.8 Transformation T8 . 198

D Overview of the developed prototypes 201

Bibliography 203

List of Figures

1.1 An illustration of application-level multi-tenancy: instead of devel-
oping and setting up a dedicated instance of the SaaS application for
each individual tenant, multi-tenancy aims to have multiple tenants
share a single application stack in order to increase resource sharing
and maintain only a single code-base [119, 67]. 5

2.1 Access control constrains which subjects can perform which actions
on which resources in a system. 18

2.2 An example of the access control matrix based on a simple file system
with three resources, i.e., the files, and three subjects. 19

2.3 An example instantiation of role-based access control [100] with three
subjects, two roles and three resources with each two actions. As
illustrated, a role bundles multiple permissions and thereby provides
more scalable access control management than identity-based access
control. This example defines that nurses can only read two specific
documents while physicians can read and write any document. . . . 22

2.4 An example instantiation of attribute-based access control [100] with
three subjects and three resources with each respectively three and
four attributes. As illustrated, when user7 attempts to access doc2, the
access decision is the result of evaluating the policy with the attributes
of this subject, this resource and the environment. 23

2.5 The reference architecture for policy-based access control systems [117]. 32

2.6 The Kerberos protocol for authenticating a client across a network of
servers [168]. 34

xix

xx LIST OF FIGURES

2.7 A common protocol for federated authentication through the web
browser of the user [6, 2]. 39

2.8 The OAuth protocol for granting a client access to the resources of a
user in a web service without having to share the credentials of that
user [122]. 41

2.9 Overview of the contributions of this thesis based on the background
discussed in this chapter. RPDP stands for Remote Policy Decision
Point and is introduced in Chapter 4. 47

3.1 The Amusa middleware provides incremental three-layered manage-
ment of multi-tenant SaaS applications based on policy-based access
control with attribute-based tree-structured policies and encapsulates
this functionality in reusable middleware. 50

3.2 A high-level view of the first case study that inspired this chapter:
the eDocs service that enables tenants to efficiently generate and
distribute large numbers of digital personalized documents to their
respective users and customers. 52

3.3 A high-level view of the second case study that inspired this chapter:
the eWorkforce service that automatically plans the workflows for
the product and service appointments of its tenants. 53

3.4 Amusa enables attributes to be incrementally defined in three layers:
Amusa, the provider and the tenants (illustrated for the key scenario). 59

3.5 Next to attributes, Amusa also enables policies to be incrementally
defined in three layers: Amusa, the provider and the tenants
(illustrated for the key scenario). 60

3.6 The policy tree that securely combines the policies of all stakeholders,
illustrated for the key scenario. subj is subject, res is resource. 62

3.7 The decomposition of the architecture of the Amusa middleware. The
policy decision point is the component that evaluates the policies and
returns an access decision. AuthN is authentication, PEP is Policy
Enforcement Point and PDP is Policy Decision Point. 64

3.8 A possible and realistic deployment of the Amusa architecture
illustrated in Figure 3.7. AuthN is authentication, PEP is Policy
Enforcement Point and PDP is Policy Decision Point. 67

3.9 The configuration flow when a tenant administrator updates a policy
resulting from the deployment of Figure 3.8. 68

LIST OF FIGURES xxi

3.10 The authentication flow resulting from the deployment of Figure 3.8. 69

3.11 The authorization flow resulting from the deployment of Figure 3.8. . 70

3.12 The total policy evaluation time from the point of view of the PEP,
for every request of Table 3.1 and for each of the six combinations of
the two performance tactics of Section 3.3.3. Each graph shows the
portion of the evaluation time spent on network overhead, fetching
attributes and processing the policy. Lower is better. The percentage
on top of each bar represents the fraction of the complete time to
process the application request spent on authorization. The dotted
line represents the average over all requests. 78

4.1 The case study that inspired this work: a system for monitoring
patients at their homes, offered to hospitals as a service. 88

4.2 High-level overview of federated authorization applied to SaaS: When
a user makes a request to a SaaS application (step 1), this application
asks the access control system of the tenant to which this user belongs
for an access control decision (step 2). This system evaluates its
policies locally for this request (step 3) and returns its decision (step 4),
which the application enforces afterwards, e.g. by returning the
requested resource to the user (step 5). 93

4.3 The generic architecture for federated authorization. PP and PT are
the provider and tenant policy sets respectively and AR, AS,P , AE,P ,
AS,T and AE,T are as defined in Section 4.3.2. 97

4.4 The access control flow resulting from the generic architecture of
Figure 4.3. C.H. is Context Handler, Ob.S. is Obligation Service, PP

and PT are the provider and tenant policy set respectively, PEP, PDP,
PIP and PAP are as defined in Section 2.3.2 andAR,AS,P ,AS,T ,AE,P

and AE,T are as defined in Section 4.3.2. For readability reasons, the
provider attribute service is not shown explicitly. 98

4.5 Decision time in terms of the amount of single-valued tenant and
provider attributes. 103

4.6 Decision time in terms of the percentage of tenant attributes in a total
of 30 attributes. 103

4.7 Decision time in terms of the amount of values in a single large
provider or tenant attribute. 103

xxii LIST OF FIGURES

4.8 Part of the federation of organizations involved in the collaborative
care platform. As illustrated, such a platform quickly leads to a
federation of a large amount of organizations and individuals of
different nature. Moreover, because every organization remains a
separate domain of management, the access control data (indicated by
the cans) and the policies that apply to the care platform are scattered
across the federation. 109

5.1 Representation of the example policies of Section 5.2.2 as a policy tree
using our policy model. The intermediate policies bundle the rules
for a certain type of subjects, e.g., PPh contains the rules that apply
to physicians, PCa those that apply to physicians of the cardiology
department and PNEl those that apply to nurses of the elder care
department. 124

5.2 Policy transformations used in the policy federation algorithm. T1,
T2 and T3 allow Policies and Rules to be split in an equivalent set
of smaller elements and vice versa; T4, T5 and T6 allow Policies
with more than two children to be expanded into binary trees or
vice versa; T7 and T8 show the commutativity of PermitOverrides
and DenyOverrides. Appendix C proves the correctness of these
transformations by means of their truth tables. While these
transformations are here shown for 2 or 3 elements, each can be
generalized to N elements. 127

5.3 The result of normalizing P0 illustrated in Figure 5.1. 129

5.4 The result of decomposing the normalized version of P0 illustrated in
Figure 5.3. Grey elements are deployed provider-side, white elements
are deployed tenant-side. Elements with a prime symbol are references
to a remote policy. 134

5.5 Architecture of the supporting middleware for policy federation in
terms of the XACML reference architecture (see Section 2.3.2). The
Policy Federation Layer is the focus of this work. 136

5.6 Results of the performance tests. The upper chart shows the number
of remote requests needed for evaluating the policies for a certain
request (lower is better), the lower chart shows the resulting policy
evaluation time in milliseconds (lower is better). For each access
request, we show the results for provider-side evaluation, tenant-side
evaluation and federated evaluation. As shown, the federated policy
provide the best results for most access requests. 137

LIST OF FIGURES xxiii

6.1 In order to support large throughputs, current applications are
designed for and deployed on a scalable distributed infrastructure. In
these cases, a central policy decision point is not able to scale with
the application. 145

6.2 Sequential versus concurrent evaluation of history-based policy P1 of
Section 6.2.2. As illustrated, concurrently evaluating a history-based
policy can lead to incorrect access decisions if not performed properly. 147

6.3 Representation of P1 of Section 6.2.2 as an attribute-based policy tree
with obligations, similar to XACML. 150

6.4 A black box representation of a policy evaluation by a policy decision
point. As illustrated, all attribute updates are performed after the last
attribute read [5], a property that we build upon in our approach. . . 151

6.5 The protocol for concurrency control using the centralized coordinator,
in case there is no conflict. 153

6.6 Two possible deployments using a centralized coordinator. 154

6.7 The protocol used for distributing concurrency control over two
coordinators, in case there is no conflict. 156

6.8 Three possible deployments using a distributed coordinator. 157

6.9 The overhead of the distributed coordinator with respect to the size
of the pool of distributed coordinators. 160

6.10 The throughput of a centralized coordinator compared to the chance
for concurrency conflicts, measured on a single machine with 4
workers and 4 CPUs. 161

6.11 The latency and throughput of a centralized coordinator and a varying
number of workers deployed on a single machine of 4 CPUs, with
respect to a growing number of parallel clients. 162

6.12 The maximal throughput of a centralized coordinator deployed on a
machine with varying number of CPUs and serving a growing number
of worker machines of each 2 CPUs and each hosting 4 workers. . . . 164

6.13 The maximal throughput of a growing number of distributed coordi-
nators, each located on a machine of 2 CPUs and each managing 4
workers. 165

xxiv LIST OF FIGURES

7.1 Our vision on simplifying the specification of a policy for a certain
application and organization: for achieving correctness and complete-
ness checking, this policy should be based on a model of the resources
and actions in the application and a model of the subjects in the
organization. 177

7.2 Our view on applying policy-based access control in practice. 182

List of Tables

3.1 Description of the test set-up: run-time properties of 8 representative
requests for the employed policy, i.e. the number of nodes evaluated
in the policy tree (can result into NotApplicable), the number of
evaluated rules (leafs of the policy tree) and the number of attributes
required to reach a decision. This total number of required attributes
to reach a decision is further decomposed into the number of different
required attributes (because the second request for the same attribute
will be solved from the cache), the number of different resource
attributes, the number of different subject attributes and the number
of these that are pushed. These numbers do not take into account
identifiers of the subject, the resource or the action. 76

xxv

Chapter 1

Introduction

During the last decades, information technology and software have penetrated every
aspect of our society. We now use IT systems to pay our taxes over the web, perform
wire transfers from our smart phones and share our daily lives with our friends.
Behind the scenes, software now drives cars, flies planes, trades on the stock market
and manages power plants. More and more information is digitized in order to ease
administrative procedures and to enable applications such as the electronic health
record.

As more operations are automated and more information is digitized however, security
becomes of higher importance as well. For example, it is clear that we do not want any
person or system to turn off the brakes of our car. Similarly, we only want ourselves,
our spouse or authorized bank clerk to perform a wire transfer from our accounts.
And finally, we do not want our insurance company to read all the details in our
medical record. In summary, any application that manages data or infrastructure of
some value requires some form of security.

There are many different facets to security and of these, this thesis focuses on access
control. Access control aims to constrain which users can access which data in an
application by enforcing access rules. As a simple example, such a rule can express that
the account managers of a certain company are only permitted to access documents
of the customers that are assigned to them.

Over time however, access control has grown increasingly complex and challenging.
For example, organizations such as modern hospitals currently treat thousands of
patients every day and employ nurses, physicians and supporting staff that are
structured in teams, projects and shifts and are possibly spread acrossmultiple physical
and autonomous departments. This leads to the challenge of designing access control

1

2 INTRODUCTION

techniques that are powerful enough to express all of these concepts and support
these complex scenarios. At the same time however, these techniques should still be
easy to manage, should not slow the software down, should be easy to incorporate in
the underlying code and should be guaranteedly secure. As such, access control is
faced with the continuous challenge of increasing expressivity and supporting more
complex usage scenarios while maintaining usability, performance and security.

This thesis contributes to further addressing this challenge. More specifically, this
thesis focuses on access control for Software as a Service or SaaS. SaaS makes up a
novel and promising type of applications in the domain of cloud computing, but also
poses specific challenges for access control. As such, the goal of this thesis can be
summarized as:

This thesis aims to provide techniques that enable and facilitate
access control in Software-as-a-Service applications.

In the rest of this chapter, we first introduce access control and Software as a Service.
We then identify the challenges for access control in SaaS and present the goals of
this thesis. Next, we present the approach taken in this research and discuss the four
major resulting contributions. Finally, this chapter concludes with an overview of the
structure of the rest of this thesis.

1.1 Access control and Software as a Service

This thesis focuses on access control for Software as a Service. In this section, we first
introduce access control, then introduce Software as a Service and finally discuss the
need for access control in Software-as-a-Service applications.

1.1.1 Access control

Access control is the part of security that constrains the actions that are performed
on the data in a system by enforcing access rules.

Because of the importance of access control in software, it has been subject to research
for decades. As a result, the research on access control is both broad and deep.
Amongst others, a lot of effort is spent on designing models to efficiently and correctly
specify the permissions of users in a system, e.g., lattice-based access control [143],
role-based access control [100], attribute-based access control [123] and more recent
advances such as usage control [171] and relationship-based access control [115, 104].

ACCESS CONTROL AND SOFTWARE AS A SERVICE 3

These models have then led to formal definitions of their properties (e.g., [44, 49]), to
supporting administrative models (e.g., [183]) and methods such as role mining [138].

Also, a lot of research effort is spent onmaking it easier to incorporate access control in
application code. Amongst others, this has led to the approach of policy-based access
control [190, 181] in which the access rules are declaratively specified in so-called
policies. This in turn has led to research on languages for expressing these policies
(e.g, Ponder [79], XACML [117] and SecPAL [42]), on combining policies of multiple
parties (e.g., [54]) and on expressing specific rules such as separation-of-duty [56].

In addition, access control research also encompasses secure authentication (e.g.,
using cryptographic keys [191]), performance of access control (e.g., [152, 134, 76]),
automatic placement of access control code in application code (e.g., [166]), formal
models of access control systems (e.g., [186, 111]), enabling efficient access control
across multiple organizations (e.g., [173, 2]), supporting concepts such as dynamic
delegation of rights (e.g., [75]) and applying all of these concepts to specific
technologies such as workflows (e.g., [73]) and databases (e.g., [124]). Of course,
this listing is still far from complete.

Because of our background in industrial case studies and research projects, this thesis
focuses on whether the existing techniques in this broad domain can be applied
to address the access control challenges specific to SaaS and how they should be
improved to do so. Moreover, this thesis focuses on application-level access control, as
opposed to for example language-level access control or database-level access control.
In application-level access control, the access rules are expressed in terms of the
concepts that are present in the application and the organizations that employ it.
Chapter 2 goes deeper into the access control research on which this thesis builds.

1.1.2 Software as a Service

Software as a Service is one of the three service models identified in cloud
computing [161]. Briefly said, cloud computing is a recent paradigm in which one
or more customer organizations called tenants employ computing resources (“the
cloud”) hosted and operated by a provider over the internet as a service. The latter
means that tenants are able to rapidly sign up for the service, provision new resources
with minimal or no human interaction of the provider and only pay for the resources
that they have consumed (a “pay-per-use” cost model). Depending on the type of
computing resources offered by the provider, three service models are identified:

1. With Infrastructure as a Service or IaaS, the provider offers a pool of fundamental
computing resources such as storage or processing. A well-known IaaS offering
is Amazon EC2 [20], which allows tenants to build their own infrastructure on
top of the physical infrastructure of Amazon in the form of virtual machines.

4 INTRODUCTION

2. With Platform as a Service or PaaS, the provider offers a platform with specific
libraries and services for tenants to deploy and run their own applications on.
A well-known PaaS offering is Google AppEngine [19], which allows tenants to
run their applications written in Java, Python, PHP or Go and provides specific
services to easily scale out these applications.

3. With Software as a Service or SaaS, the provider offers an entire application for
use through a thin client. Two well-known SaaS offerings are Google Drive [22]
and Salesforce [21], which respectively provide an office suite and a suite for
customer relationship management, both for use in a web browser.

This thesis focuses on the third of these three service models, i.e., SaaS. The market
for SaaS has been growing substantially in the previous years and is expected to
continue to do so (e.g., see [13]), amongst others because of the ease of use of SaaS
applications and the ease of providing a SaaS application to multiple customers around
the world. SaaS can also play an important role for the industry in Flanders and
is gaining traction, as illustrated by the growing number of SaaS providers in this
region in industries such as document processing [16], workforce management [16],
e-health [15, 11] and security [26, 8].

Key characteristics of SaaS

In essence, SaaS applications are characterized by three characteristics: (i) the fact
that they employ application-level multi-tenancy, (ii) their scale and (iii) their nature
as outsourcing.

Characteristic 1: application-level multi-tenancy. Firstly, SaaS applications are
typically provided to and employed by multiple tenants at the same time, a concept
called multi-tenancy [119, 67]. More precisely, multi-tenancy is an architectural
strategy that aims to lower the operational costs of a service by means of economies
of scale. In earlier paradigms, the provider of a service would have developed and
set up a dedicated instance of this service for each individual tenant, which leads to
sub-optimal usage of the underlying hardware and multiple variants of the same code
base that all have to be maintained. Multi-tenancy attempts to address these issues
by having multiple tenants share the underlying resources of the service in order to
increase hardware sharing and maintain only a single code-base. More specifically for
SaaS, multi-tenancy aims to have tenants share the full application stack, a concept
called application-level multi-tenancy (see Figure 1.1).

Characteristic 2: large scale. Secondly, SaaS applications are aimed for large
amounts of tenants. Amongst others, this is a consequence of the fact that multi-

ACCESS CONTROL AND SOFTWARE AS A SERVICE 5

Figure 1.1: An illustration of application-level multi-tenancy: instead of developing
and setting up a dedicated instance of the SaaS application for each individual tenant,
multi-tenancy aims to have multiple tenants share a single application stack in order
to increase resource sharing and maintain only a single code-base [119, 67].

tenancy lowers the overhead of accepting a new tenant for the provider and thereby
enables the provider to aim for a large amount of smaller tenants [67]. This focus
on a large amount of tenants has two consequences. Firstly, in order to be able to
manage this large amount of tenants, SaaS applications rely on self-management.
More precisely, new tenants should be able to sign up for the application and manage
it themselves with as little human interaction of the provider as possible. Secondly,
a large amount of tenants leads to a large amount of users and a large amount of
requests to the application. In order to support this throughput, SaaS applications are
deployed on a distributed infrastructure and the software is engineered to be able to
scale out with low latency overhead.

Characteristic 3: SaaS is outsourcing. Finally, SaaS is a form of outsourcing as the
tenants essentially outsource the hosting and management of the SaaS application to
the provider. For the tenants, this lowers their required in-house IT infrastructure
and IT personnel. This characteristic also has two consequences. Firstly, the data of
the tenants in the SaaS application and the software that manages this data are both
located in the infrastructure of the provider, i.e., outside of the premises of the tenant.
Secondly, while the tenants trust the SaaS provider with the data in the application
itself, they do not necessarily trust the SaaS provider with any more than that and
may want additional assurances from the provider, such as whether no data was lost.

As we will see, these three characteristics all pose challenges for SaaS access control.

6 INTRODUCTION

1.1.3 The need for security and access control in SaaS

Our focus is on security for SaaS. For the tenants, this security should protect their data
in the application from being read or altered by unauthorized persons and systems.
For the provider, this security should make sure that only the appropriate, e.g., paying,
tenants are able to access the SaaS application and should protect it from being made
unavailable.

To some extend, SaaS security can build on similar security techniques as other (web)
applications. For example, secure channels such as HTTPS can be used to protect
the data sent to and from the SaaS application. Additionally, network-level access
control techniques such as firewalls are required to protect the SaaS infrastructure
from unrestricted access. Also, secure authentication techniques such as multi-factor
authentication can be used to protect against password theft. And finally, existing
countermeasures can be applied to protect the application against well-known code-
level vulnerabilities such as SQL injection.

What is specific to SaaS however is the large need for application-level access control.
Similar to other types of applications, the provider requires this access control to
restrict the access of tenants to the application and the tenants require it to restrict
which of their users can access which of their data in the application. The additional
reason for the need for application-level access control in SaaS however is application-
level multi-tenancy. More specifically, when an application is shared by multiple
tenants, an important security requirement is to make sure that one tenant cannot
access the data of another tenant, a form of tenant isolation [119]. Because all tenants
of a SaaS application share the same code, the same application instances and the same
underlying database, this separation cannot be enforced architecturally any more, i.e.,
it is not possible any more to provide dedicated application instances and a dedicated
database to each tenant and isolate these on different dedicated networks. As a result,
SaaS applications rely on application-level access control to separate tenants.

1.2 Challenges for access control in SaaS

Access control is an essential part of security for SaaS. However, SaaS access control
also faces specific challenges.

1.2.1 Functional challenges

Based on the discussion of the previous section, SaaS access control should support
the following combination of functionality:

CHALLENGES FOR ACCESS CONTROL IN SAAS 7

1. Tenant isolation: Access control for SaaS should separate the different tenants
in a SaaS application from each other, except when explicitly permitted.

2. Constraining tenants: Access control for SaaS should allow the provider to
restrict which tenants can access the application1.

3. Constraining end-users: Access control for SaaS should allow the tenants to
restrict which of their own users, e.g., its employees or customers, can access
which part of their data in the application.

1.2.2 Non-functional challenges

While it is non-trivial to support the above functionality in the first place, each of
the three essential characteristics of SaaS listed in Section 1.1.2 leads to additional
non-functional challenges for access control as well.

Non-functional challenges frommulti-tenancy. While multi-tenancy leads to the
functional requirement of enabling the tenants to restrict their own users, every tenant
in addition wants to be able to enforce access rules specific to its own domain and
organization. For example, a hospital will reason about physicians and departments,
while a bank will reason about bank clerks, assigned customers and shifts. As a result,
multi-tenancy requires to support access rules consisting of a wide variety of access
control concepts, of which some are even domain-specific. This challenge is a specific
instance of the broader challenge of tenant variability [47, 119, 195]. Moreover, as a
SaaS application can be used by a large number of tenants, it would not be feasible
with respect to availability to have to restart or even recompile the application for
every new tenant or every change in access rules. As a result, multi-tenancy requires
to be able to specify the access rules independently of the application code and to be
able to modify them without having to recompile or restart the application.

Non-functional challenges from the large scale. SaaS applications aim for a large
amount of tenants. As a result, SaaS applications are designed to scale out on a
distributed infrastructure and they rely on self-management. Both characteristics
lead to challenges for access control. Firstly, access control should also be designed
to be able to scale to the throughput of the application itself. The reason for this is
that access control should be enforced on most, if not any, request to the application

1Notice that most SaaS providers also have their own users that access the application, e.g., employees
such as help desk operators. SaaS access control should also allow the provider to restrict the access of these
users to the SaaS applications. In this thesis, we do not explicitly take this requirement into account as this
can be addressed by modeling the provider as a tenant that can restrict its own users as per requirement 3
above.

8 INTRODUCTION

and should not hinder the scalability of this application. Secondly, access control
should function correctly in the context of a distributed system, e.g., in the presence of
partial failures and concurrency. Thirdly, the self-management should also hold for
access control. More precisely, tenants should be able to configure their own users
and their rights autonomously. However, this self-management should still be secure
and guarantee, for example, that the tenants cannot configure access rules that allow
them to access the data of other tenants.

Non-functional challenges from outsourcing. SaaS in essence is a form of
outsourcing. As a result, the data in a SaaS application is located outside of the
premises of the tenant and the tenant does not necessarily trust the provider with
data other than that in the SaaS application. In this case, especially the latter leads to
challenges for access control. More precisely, in some cases, the tenant may want to
enforce certain access rules on the SaaS application, but does not want to disclose the
sensitive access control data required to evaluate them or even may not be permitted
to by law. This is most clear in privacy-sensitive application domains such as e-health
where policies often reason about patient-physician relationships, consent or the
condition of a patient. In addition, the tenant may not want to disclose sensitive access
rules themselves, for example in case of rules that reason about its competitors.

1.2.3 Additional concerns

The previous listed the SaaS-specific non-functional challenges for SaaS access control.
In addition to these, we also take into account three concerns that should hold for
every software system: (i) low management overhead, (ii) low performance overhead
and (iii) low software engineering overhead.

Concern: low management overhead. If an access control technique requires a
large management effort of the provider or of a tenant, it is less likely to be used in
practice. Additionally, while a SaaS application is used by multiple tenants, it should
also be feasible for each tenant to use multiple SaaS applications. Therefore, we take
into account the concern that the techniques designed in this thesis should impose only
low management overhead and if possible, should even lower the management overhead
of access control. Finally, in order to enable organizations to efficiently express their
access rules, the technologies developed in this thesis should also support fine-grained
access rules that combine multiple access control concepts such as identity-based
permissions, groups, hierarchic roles, time, location and separation of duty (we explain
these concepts in more detail in Chapter 2).

GOALS OF THIS THESIS 9

Concern: low performance overhead. Similarly to the management overhead, if
an access control technique damages the performance or usability of the application
on which it is enforced, that technique will not be used in practice. We already
explained the requirement of scalability and throughput to cope with a large amount
of tenants. In addition, we also take into account the concern that the techniques
designed in this thesis should impose limited latency overhead.

Concern: low engineering overhead. Finally, in a similar reasoning as before, we
also take into account the concern that the techniques designed in this thesis should
require little engineering effort for the developer of a SaaS application. Especially for
complex functionality such as multi-tenant access control, our work should make it
easier to support and incorporate this functionality in a SaaS application.

1.3 Goals of this thesis

The goal of this thesis is to enable and facilitate access control in Software-as-a-Service
applications by studying, designing and evaluating access control techniques that
address the challenges discussed in the previous section. More specifically, this thesis
focuses on four sub-sets of these challenges, leading to four more specific goals:

Goal 1: address the challenges frommulti-tenancy. Our first goal is to design an
access control technique that addresses the challenges from multi-tenancy. In the
first place, this technique should enable the provider and all the tenants to enforce
their specific access rules on the shared multi-tenant SaaS application and should
isolate the multiple tenants in this application. In addition, this technique should
support this functionality with low performance overhead and it should impose low
management overhead on the tenants and provider. As such, this goal focuses on the
challenge of multi-tenancy and the concerns of low performance and management
overhead.

Goal 2: lower the management overhead for tenants. The previous goal effec-
tively is to enable tenants to express their access rules on a SaaS application. However,
when the tenants have to configure their access rules in the SaaS application itself,
their overall access management is scattered across the multiple SaaS applications
that they use, which in turn leads to a large administrative overhead and eventually
to inconsistencies and security bugs.
Therefore, our second goal is to design an access control technique that lowers the
management overhead for tenants. More precisely, this technique should enable

10 INTRODUCTION

tenants to centrally manage access control for all SaaS (and on-premise) applications
that they employ. As such, this goal focuses on the concern of low management
overhead for the tenants.

Goal 3: limit the disclosure of sensitive access control data and rules. Our first
goal was to enable tenants to express their access rules on the SaaS application. If the
provider also evaluates the rules of its tenants, these tenants are forced to disclose their
access rules and the data required to evaluate them to the SaaS provider. However,
tenants do not necessarily trust the provider with these rules or data.
Therefore, our third goal is to design an access control technique that enables tenants
to enforce their access rules on a SaaS application without having to disclose these
rules nor the data required to evaluate them with the provider of that application.
In addition, this technique should provide this functionality with low performance
overhead. As such, this goal focuses on the challenge of limited trust in the SaaS
provider.

Goal 4: enable policy evaluation to securely scale out. Finally, our fourth goal is
to enable policy evaluation to scale to the size of the application that it constrains. To
achieve this, policies should be evaluated concurrently and distributedly. However,
for certain classes of policies such as history-based policies, one access decision
depends on the previous ones. As a result, concurrency can be exploited to achieve
incorrect access decisions and privilege escalation. Moreover, general techniques for
concurrency control in databases are not able to address this issue and scale to the
size of current applications at the same time.
Therefore, our fourth goal is to design an access control technique that avoids incorrect
access decisions due to concurrency, is able to scale to a large number of machines and
incurs only a limited latency overhead. As such, this goal focuses on the challenge of
the large scale of SaaS applications and the concern of low performance overhead.

In addition to these four goals, we also aim to provide the designed access control
techniques as reusable middleware, i.e., as software that fulfills and encapsulates
complex (distributed) functionality in a way that can easily be employed by an
application through well-defined APIs. This additional goal stems from the concern
of low engineering overhead. As a result of this goal, the techniques designed in this
thesis encompass end-user interfaces and domain-specific languages as well as the
underlying run-time environment and software engineering techniques.

As we will see later on, these goals have led to four distinct contributions of this
thesis.

RESEARCH APPROACH 11

1.4 Research approach

Our approach for achieving the goals listed in the previous section is characterized
by three key properties: (i) the requirements analysis and validation is driven by
case studies, (ii) we deliberately build upon existing state-of-the-art technologies and
(iii) we employ prototype-based evaluations.

1.4.1 Case studies

As a first characteristic of our approach, our research is heavily driven by realistic
case studies of SaaS applications. Each of these case studies resulted from a research
project in collaboration with other research partners and companies from industry.
This approach allowed us to gain insights in the access control challenges of real-life
SaaS applications. In essence, the challenges stated in the previous section were
identified in these case studies. In addition, this approach allowed us to validate
our contributions, amongst others based on a realistic set of access rules derived
from these case studies and the feedback from the industry partners in the research
projects.

More precisely, this research is driven by four distinct case studies:

Case study 1: eDocs – automated document processing. Our first case study is a
SaaS application provided by a company that we call eDocs in this thesis. This SaaS
application enables large companies such as banks and press agencies to efficiently
generate and distribute large amounts of digital documents such as pay checks and
invoices to their respective users and customers. In addition, the recipients can read
and manage all their received documents using the application.
This case study is based on the ICON research project called PUMA (Permission, User
Management and Availability for multi-tenant SaaS applications [16]). In combination
with eWorkforce (see next), it mainly influenced our work on Amusa by identifying
the complexity of multi-tenant access control and the challenge for SaaS providers to
build an access control system that supports this functionality. In addition, this case
study has led to an extensive set of realistic access rules that illustrate the importance
of history-based policies. This case study is further explained in Chapter 3 and was
analyzed in-depth in a separate technical report [81].

Case study 2: eWorkforce – automated workforce management. Our second
case study is a SaaS application provided by a company that we call eWorkforce
in this thesis. This SaaS application enables its tenants to automatically plan the
workflows for their product and service appointments, e.g., install and repair jobs for

12 INTRODUCTION

telecom operators, utility companies and retailers. eWorkforce assigns the resulting
appointments to technicians who receive their appointments through a mobile
application and afterwards report task progress and consumed resources such as
cables and devices.
Similarly to eDocs, this case study is based on the PUMA research project [16], it
mainly influenced our work on Amusa and it has led to an extensive set of realistic
access rules. This case study is also further explained in Chapter 3 and was analyzed
in-depth in a separate technical report [82].

Case study 3: homepatientmonitoring. Our third case study is a SaaS application
provided to hospitals for monitoring patients at their homes. More precisely, the
patients are monitored using a chest band and the measurements are sent to the SaaS
application. Telemedicine operators then check the patient’s status and notify the
patient’s physician at the hospital in case of important evolutions. A patient’s status
can also be viewed by other physicians and nurses and by the patients themselves.
This case study is based on a number of research projects [11, 12]. This case study
mainly influenced our work on federated authorization and policy federation by
illustrating the need for security and privacy in the domain of e-health, the need for
scalable access control management in organizations such as large hospitals and the
complex access rules that result from these organizations. This case study is further
explained in Chapter 4 and Chapter 5 zooms in on a set of rules from this case study.

Case study 4: collaborative care. Finally, our fourth case study is a collaborative
software platform that aims to streamline home care by improving the communication
between the multiple involved organizations such as general practitioner practices,
elder homes, home nursing organizations, hospitals and catering services. The
platform therefore digitizes the information that these organizations share, such
as prescriptions of and notes about the care receiver.
This case study was based on the ICON research project called O’CareCloudS
(Organizing Care through trusted Cloudy-like Services, [15]). In essence, this case
study extends the concept of SaaS because more than two organizations collaborate in
this application. This leads to more complex relationships between the organizations
and thus different challenges for access control. This case study has mainly influenced
our work on federated authorization and is further explained in Chapter 4.

1.4.2 Supporting technologies

As a second characteristic of our research approach, it is incremental in the sense
that we deliberately build upon three technologies available in the state of the art:
policy-based access control, attribute-based access control and tree-structured policies.

RESEARCH APPROACH 13

These technologies already partially address some of the challenges described in
Section 1.2 and thereby allow us to focus on the challenges specific to SaaS. The next
chapter discusses each of these technologies in more detail, here we summarize them
briefly:

Policy-based access control. Policy-based access control is an approach in which
the specification of the access rules is separated from the mechanisms that enforce
them in the application. As such, they can be modularized and externalized from
the application that they constrain to express them in declarative access control
policies [181]. We employ policy-based access control to enable the tenant and provider
to specify their own rules without having to recompile or restart the application. In
addition, we employ the reference architecture for policy-based access control systems
(see Section 2.3.2) to define and discuss the architecture of our contributions.

Attribute-based access control. Attribute-Based Access Control (ABAC, [123]) is
a recent model to express access rules in terms of key-value properties of the subject,
the resource, the action and the environment. These properties are called attributes
and include for example the subject identifier, the subject roles, the resource type
and the time. We employ ABAC because attributes provide a simple abstraction that
enables users to be managed in terms of their properties and because attribute-based
access rules can express a wide variety of possibly domain-specific access control
concepts.

Tree-structuredpolicies. Finally, tree-structured policies or policy trees are ameans
to structure multiple rules into one well-defined policy and reason about possible
conflicts between these rules [74, 148]. The rules are the leaves of the tree and decisions
of children are combined using combination algorithms such as FirstApplicable and
PermitOverrides. We employ policy trees because they provide an interesting approach
to efficiently and correctly combine a large number of rules in a single policy and
because they allow to reason about combining the policies of the tenants and the
provider.

In practice, these three technologies are supported by the policy language called
XACML [5]. As a result, we employ XACML in our prototypes for expressing policies.
However, XACML is known for being hard to use. Because this hindered our research,
we defined our own simplified attribute-based tree-structured policy language called
STAPL [89] and employ this in the latter part of our work. However, as we do not
regard STAPL as the focus of this thesis, we only briefly discuss it in the next chapter.

14 INTRODUCTION

1.4.3 Research prototypes

The third and final characteristic of our research approach is that we systematically
evaluate our contributions based on prototypes. This approach allowed us to validate
and evaluate the behavior of our contributions in practice, in the first place in terms
of performance. Moreover, this approach allowed us to gain practical experiences
with the employed technologies.

In total, we developed prototypes for each of the major contributions of this work.
These prototypes encompass user front-ends, background algorithms and supporting
distributed middleware. The source code of each of these prototypes, the resulting
performance measurements and optionally a live demo are available on-line. The
details of these prototypes are given in each individual chapter, an overview is given
in Appendix D.

1.5 Contributions

The results of our research can be summarized as four distinct contributions: (i) the
Amusa middleware for efficient access control management of multi-tenant SaaS
applications, (ii) the concept of federated authorization, (iii) the technique of policy
federation and (iv) a technique for scalable and secure concurrent evaluation of
history-based access control policies. These four contributions correspond to the four
goals described in Section 1.3, with Contributions 2 and 3 both stemming from both
Goals 2 and 3.

Contribution 1: the Amusa middleware for access control in a multi-tenant
context. Our first contribution stems from the goal to address the challenges
from multi-tenancy. More precisely, we present the Amusa middleware for access
control of multi-tenant SaaS applications. Amusa enables both the provider and all
tenants to specify their access rules for the SaaS application, combines these securely
and enforces them at run-time with low performance overhead. Moreover, Amusa
simplifies the overall access control management using an incremental three-layered
approach. Finally, Amusa encapsulates this functionality as reusable middleware.
In this thesis, we elaborate on the three-layered access control management of Amusa
and the architecture of the supporting middleware. In addition, we evaluate its
performance behavior and integration effort based on a prototype.

Contribution 2: federated authorization. As our second contribution, we
investigate and validate the concept of federated authorization. This second

CONTRIBUTIONS 15

contribution stems from both the goal of lowering the management overhead for
tenants as well as from the goal of limiting the disclosure of sensitive access control
data and rules. More precisely, federated authorization externalizes policy evaluation
from a remote application, dually to federated authentication (see Section 2.4.3). As
such, this approach allows to evaluate and enforce an access control policy on a SaaS
application without having to disclose this policy nor the data required to evaluate
it. Additionally, federated authorization can also facilitate scalable access control
management by enabling to centralize the access control management of a tenant for
all remote applications that it employs.
In this thesis, we define federated authorization, present a generic middleware
architecture for federated authorization, evaluate its performance behavior and
validate the potential of this concept in collaborative federated applications based on
the case study of the collaborative e-health platform.

Contribution 3: policy federation. As our third contribution, we present the
technique of policy federation. Similarly to the previous contribution, this contribution
stems from both the goal of lowering the management overhead for tenants as well
as from the goal of limiting the disclosure of sensitive access control data and rules.
In addition, this contribution focuses specifically on performance. More precisely,
policy federation optimizes the performance of federated authorization by building
on the observation that these policies require both data located at the tenant and
data located at the provider. Policy federation therefore automatically decomposes
and deploys the policies of a tenant to evaluate the resulting parts near the data they
require as much as possible while keeping sensitive access control data and policies
on the premises of the tenant.
In this thesis, we define the technique of policy federation, present an algorithm for
policy federation based on attribute-based tree-structured policies, define supporting
middleware and evaluate its performance behavior.

Contribution 4: scalable and secure concurrent evaluation of access control
policies. Finally, as our fourth contribution, we present an efficient concurrency
control scheme specifically for access control. This final contribution stems from the
goal to enable policy evaluation to securely scale out with low performance overhead.
In this regard, we focus on the concurrency issues when evaluating policies such as
history-based policies concurrently or distributedly. More precisely, we present a
concurrency control scheme that leverages the specific structure of a policy evaluation
so that this scheme can avoid incorrect access control decisions due to concurrency
and can scale to a large number of machines with limited latency at the same time.
In this thesis, we model history-based policies using attribute-based tree-structured
policies, present our scheme for concurrency control both for a centralized as well as

16 INTRODUCTION

a distributed deployment and demonstrate that this scheme is able to scale to a large
number of machines based on our prototype.

1.6 Outline

The remainder of this thesis is structured as follows.

Chapter 2 presents the background of this work and thereby discusses access control,
policy-based access control, performance tactics for policy-based access control and
federated access control.

Chapter 3 presents and evaluates the Amusa middleware for access control in a
multi-tenant context. This chapter is based on our publication at the ACM Symposium
on Applied Computing 2015 [83].

Chapter 4 investigates the concept of federated authorization and validates its
applicability in collaborative applications. This chapter is based on our publications
at On The Move 2013 [88] and at HealthInf 2015 [90].

Chapter 5 presents and evaluates the technique of policy federation. This chapter is
based on our publications at MW4NG 2012 [84] and in the Journal of Internet Services
and Applications (JISA) [85].

Chapter 6 presents and evaluates our domain-specific scheme for concurrency control
in policy evaluation. This chapter is based on our publications at MW4NG 2013 [87]
and at ACSAC 2015 [86].

Finally, Chapter 7 concludes this thesis and discusses remaining challenges for SaaS
access control and policy-based access control in general.

Chapter 2

Background

This chapter presents the background of this thesis. In the previous chapter, we
already briefly introduced access control and discussed the specific challenges for
access control in Software as a Service. In this chapter, we further elaborate on
access control in general. Section 2.1 first introduces access control. The following
sections then elaborate on the different aspects of access control that this thesis
builds upon. More precisely, Section 2.2 discusses common models for access
control. Section 2.3 introduces policy-based access control, thereby zooming in on
languages for expressing such access control policies and the reference architecture
for policy-based access control systems. Section 2.4 describes techniques for federated
access control, i.e., access control for applications involving multiple organizations.
Section 2.5 discusses existing performance techniques for policy-based access control.
Section 2.6 positions the contributions of this thesis in terms of the background
presented in this chapter. Finally, Section 2.7 concludes this chapter.

2.1 Access control

Access control is the part of security that constrains the actions that are performed
on the data in a system by enforcing access rules. Access control can be enforced
on multiple levels of a system. Of these levels, his thesis focuses on application-level
access control as opposed to for example network-level access control or database-level
access control. In application-level access control, the access rules are expressed in
terms of the concepts that are present in the application and the users that employ
it. For example, such a rule can state that account managers are only permitted to
access documents of the customers for whom they are assigned responsible.

17

18 BACKGROUND

Figure 2.1: Access control constrains which subjects can perform which actions on
which resources in a system.

The entities on which actions are performed are called resources [5] (sometimes also
objects). Examples of such resources are files in a file system, patient records in a
document management system, a database entry, a database as a whole and a socket.
Certain actions can be performed on each of these resources, such as reading a file,
adding a diagnose to a patient record, updating a database entry or opening a socket.
The entities that perform these actions on these resources are called subjects [5].
Examples of such subjects are human users, a remote machine on the internet and a
process acting in name of a user. The goal of access control is thus to constrain which
subjects can perform which actions on which resources in which circumstances (as
illustrated in Figure 2.1).

The process of access control is generally divided into authentication, authorization
and audit. Authentication is the process of ensuring that the subject is who he, she or
it claims to be. This can for example be achieved by verifying the combination of a
username and password, the combination of a public and a private cryptographic key,
or a biometric property such as a fingerprint. Authorization is the process of checking
whether an authenticated subject is permitted to perform the requested action on the
requested resource by evaluating access rules and blocking the action if not. Finally,
audit is the process of checking the past actions that authenticated subjects have
performed on the resources in the system and correcting any unauthorized actions.
In essence, both authorization and audit rely on authentication, but authorization is a
form of a priori access control while audit is a form of a posteriori access control. As a
side remark, notice that while authentication is commonly used to prove the identity
of a subject, it can also be used to prove a property of the subject (e.g., his or her age)
without releasing the identity, an approach that benefits privacy.

Of these three parts, this thesis focuses on authorization. As such, the work in this
thesis assumes that the subject has been correctly authenticated, but does not rely on
any specific technology or method of authentication. Similar to the bulk of related
work, this thesis employs the term “access control” while actually referring to the
more specific concept of authorization.

ACCESS CONTROL MODELS 19

2.2 Access control models

Because access control is an important aspect of most applications, researchers soon
started to design models in order to be able to reason about this access control. In
this section, we discuss some of the most important and relevant access control
models for this thesis. Firstly, we discuss the access control matrix, which represents
a fundamental overview of the permissions of the subjects in a system. Afterwards,
we discuss models that reason about who can assign these permissions and how
these permissions can be assigned more effectively. Finally, we discuss the concept of
obligations, which extends access control with the possibility to execute operations
in conjunction with enforcing the access decision.

2.2.1 The basics: the access control matrix

One of the earliest access control models is the access control matrix, which was
proposed by Lampson [142] in 1971. An access control matrix defines the permissions
of the subjects on the resources of the system, i.e., which actions a certain subject
can perform on a certain resource, and does so for every subject and every resource
in this system. As illustrated in Figure 2.2, this mapping from subjects to resources
can be represented as a matrix, hence the name. In essence, the access control matrix
provides a fundamental overview of the permissions of the subjects in a system
at a specific point in time, even when higher abstractions are used to assign these
permissions (see Section 2.2.3).

Figure 2.2: An example of the access control matrix based on a simple file system
with three resources, i.e., the files, and three subjects.

20 BACKGROUND

2.2.2 Who can assign permissions

The access control matrix represents the permissions of the subjects in the system,
but does not define who can assign these permissions.

In general, there are two approaches to this. Firstly, discretionary access control
(DAC, [143]) allows subjects themselves to assign permissions to other subjects for
certain resources. For example, in Unix-like file systems, the owner of a file has
the ability to specify whether others can read, write or execute it. Contrarily, with
mandatory access control (MAC, [143]) only a central administrator has the ability
to assign permissions to subjects. This approach used to typically be discussed in
a military context, but is now also incorporated in recent operating systems, e.g.,
SELinux [25]. Moreover, an organization enforcing access rules on its members is in
essence also a form of mandatory access control.

In practice, both models are often combined in order to allow users to discretionarily
manage their own resources within the boundaries of mandatory rules. As we will
see, this also applies to our work in the sense that we allow the provider of a SaaS
application to mandatorily constrain its tenants and each tenant to discretionarily
constrain its own users (which again is a form of mandatory access control from the
point of view of these users). In addition, more fine-grained models exist to define
who can assign permissions based on the administrative operations supported by the
models that define how permissions are assigned (e.g., ARBAC [183]). We discuss
these models next.

2.2.3 How permissions are assigned

In addition to who can assign permissions, there are also multiple models that define
how permissions are assigned. In this section, we describe four of themost well-known
of such models: identity-based access control, lattice-based access control, role-based
access control and attribute-based access control.

Identity-based access control

In essence, the access control matrix can be seen as the most basic model to assign
permissions to subjects: permissions are assigned to each individual subject for
each individual action on each individual resource. This approach can be called
identity-based access control.

In order to represent the permissions of the subjects in practice, the access control
matrix is often implemented and stored in parts. One possible approach are access
control lists. These contain the permissions of all subjects in a system on a certain

ACCESS CONTROL MODELS 21

resource and are stored with that resource. The dual approach is storing the list of
permissions of a certain subject on the resources in the system as capability lists.

The approach of identity-based access control is straightforward, but also poses several
disadvantages. For example, this approach leads to large management overhead
when the number of subjects and resources grows. In addition, this approach lacks
protection against untrusted code that runs in name of a subject. To address these
challenges, other models provide higher abstractions for assigning permissions, which
we discuss next.

Lattice-based access control

A first well-known access control model that aims to address some of the shortcomings
of identity-based access control is multi-level access control or lattice-based access
control [143].

In lattice-based access control, subjects and resources are assigned a security level.
These levels are structured in hierarchies, e.g., highly confidential, confidential
and public, and multiple such hierarchies are combined into a lattice. To ensure
confidentiality, access control then enforces that subjects are not permitted to read
resources of higher security levels, nor write resources of lower security levels (the
model of Bell and LaPadula [44]). The opposite access rules, i.e., denying reading
resources of lower security levels and denying writing resources of higher security
levels, ensure integrity (the model of Biba [49]). Lattice-based access control can also
protect against untrusted code that runs in name of trusted subjects by assigning the
security level of a subject to the processes that he or she starts and also enforcing
access control on these processes. This well-known application of multi-level access
control is the reason why it originally was and still often is discussed in combination
with mandatory access control.

The concept of the security levels in this model can be seen as the foundation of
the more general concept of information flow control [179]. However, in a broader
context, lattice-based access control fails to support the access control concepts that
are present in the application-level access rules that this work focuses on, such as
ownership or roles.

Role-based access control

In addition to protecting against untrusted code, lattice-based access control in essence
also provides more scalable access control management than identity-based access
control by assigning labels to subjects and resources instead of assigning individual
permissions. However, lattice-based access control does not provide a suitable model

22 BACKGROUND

Figure 2.3: An example instantiation of role-based access control [100] with three
subjects, two roles and three resources with each two actions. As illustrated, a role
bundles multiple permissions and thereby provides more scalable access control
management than identity-based access control. This example defines that nurses can
only read two specific documents while physicians can read and write any document.

for easily expressing common application-level access rules. As a result, another
concept for scalable access control management arose in the 1990s: roles.

Roles form an intermediary between the subjects and their permissions on the different
resources (see Figure 2.3): a permission represents a specific action on a specific
resource, a role bundles multiple permissions and a subject is assigned one or more
such roles. Roles are a natural concept for grouping subjects and in addition, these
roles can be modeled to represent the structure of an organization.

Eventually, the concept of roles was ratified into role-based access control (RBAC)
as a NIST standard by Ferraiolo et al. [100] in 2001. In addition to the basic model
described in the previous paragraph, this standard also describes how roles can be
structured in hierarchies and how roles can be used to enforce separation of duty
rules (as first described by Brewer [56]) both statically and dynamically. RBAC is
currently employed in practice (e.g., in Spring Security [27]) and has received a lot of
attention in research, amongst others with a focus on role mining, formal properties,
role administration and practical applications of roles. Fuchs et al. provide a good
overview of this field in their survey [109].

However, while RBAC has many advantages compared to previous approaches, it
also has the disadvantage that certain rules cannot be easily modeled as roles. For
example, expressing that a subject can only access its own resources (an ownership
rule) requires one role per user. Similarly, expressing negative rules in which certain
subjects are excluded from certain resources requires separate roles for every role

ACCESS CONTROL MODELS 23

minus these subjects. More generally speaking, expressing fine-grained rules in RBAC
leads to a large amount of roles (as illustrated by for example Schaad et al. [185]),
a problem informally known as role explosion (e.g., as used by Jin et al. [128]). In
addition, expressing that a subject can only access a resource during a certain time
period requires to activate and deactive roles dynamically. As a result of these
limitations, a large amount of extensions to RBAC have been proposed, such as roles
that incorporate time information [45], location information [46], ownership [102],
multi-tenancy [29] or generic parameters [116].

Attribute-based access control

Following the multiple extensions to RBAC, eventually attribute-based access control
(ABAC) arose. As such, ABAC can be seen as a generalization of these extensions to
RBAC as discussed by Sandhu [182].

ABAC (see Figure 2.4) expresses access rules in terms of generic key-value properties

Figure 2.4: An example instantiation of attribute-based access control [100] with
three subjects and three resources with each respectively three and four attributes.
As illustrated, when user7 attempts to access doc2, the access decision is the result
of evaluating the policy with the attributes of this subject, this resource and the
environment.

24 BACKGROUND

of the subject, the resource, the action and the environment (i.e., the context). These
key-value properties are called attributes. Examples of subject attributes are his, her
or its identifier, location and roles; examples of resources attributes are its type, owner
and security label; an example of an action attribute is its identifier, and examples of
environment attributes are the time, date and state of the system. This distinction
between attributes of the subject, resource, action and environment was ratified in
the first XACML standard [117] and was later discussed in research as one of the first
by Yuan and Tong [212].

ABAC has a number of interesting properties. Amongst others, attributes provide a
simple yet versatile abstraction for managing users and for communicating between
multiple organizations [2, 6, 3]. In addition, attributes are an interesting means to
express access rules because they can express a wide spectrum of well-known access
control concepts such as permissions, roles, ownership, time, separation of duty and
location, as well as domain-specific access control concepts such as the assigned
customers of a subject or the patients of a physician. Section 2.3.1 shows more
elaborate examples of this. For these reasons, this work builds upon ABAC.

Because of its interesting properties, ABAC is gaining attention in both research and
industry. In research, Jin et al. [127] have recently shown that ABAC can express
the previous models of identity-based discretionary access control, lattice-based
access control and role-based access control. Another interesting research track is
the transition from RBAC to ABAC. In this context, Kuhn et al. [139] identify three
alternatives for integrating attributes and roles: automatically assigning roles based
on attributes, modeling roles as any other attribute and restricting the permissions
resulting from a subject’s roles using attributes. In industry, ABAC is growing into a
more general methodology for managing access control for IT applications [123].

However, there are still challenges to be addressed for a successful adoption of ABAC
in practice. Sandhu [182] and Hu et al. [123] both provide good overviews of these
challenges, but to highlight a few, (i) the increased expressiveness of themodel requires
additional support for reviewing, testing and monitoring the access rules, (ii) the
practical adoption requires qualitative and preferably certifiable attribute sources and
(iii) the increased complexity of the access rules requires performance techniques to
limit the impact on the application. Although it was not our direct goal, this thesis
does aid in the maturation of ABAC by employing and evaluating it in the realistic
setting of multi-tenant SaaS applications.

Further advances

Following up on ABAC, other researchers have introduced more advanced access
control models.

ACCESS CONTROL MODELS 25

For example, one interesting evolution is the notion of usage control (UCON) as
introduced by Park and Sandhu [171, 184]. UCON aims to extend “traditional”
access control with features such as mutable attributes, obligations and continuous
authorization for long-lived services. In addition, UCON aims to unify access control
with trust management, digital rights management and privacy protection. While
UCONwas introduced over ten years ago, its advanced features still provide interesting
techniques for current challenges, e.g., using continuous authorization in access
control for cloud services [145] or using mutable attributes to model history-based
policies (see Chapter 6). The work of Zhang et al. [213] demonstrates the potential
of these techniques by applying them in a usage-based security framework for
collaborative computing systems. For a broader overview of the work on UCON, we
refer to Lazouski et al. [146].

Another interesting evolution is the concept of provenance-based access control as
recently introduced by Park et al. [170] as well as by Bates et al. [39]. In this model,
provenance data, i.e., data about the origin of other data and the actions taken on it,
is used to evaluate access control rules. This data can prove an interesting source of
information for access control, amongst others to enforce stateful access rules such
as dynamic separation of duty [169].

Finally, we want to highlight the notion of relationship-based access control (ReBAC).
ReBAC expresses access rules in terms of the inter-personal relationships between
users. This model was first introduced in the context of social networks, for example
in the work of Carrie and Gates [61], Fong [104] and Cheng et al. [66]. Interestingly,
ReBAC has recently been generalized into entity-based access control (EBAC, [115, 78]).
This model in turn expresses rules as constraints over subjects, resources, entities in
between (e.g., contracts, treatments, teams, organizations etc) and the relationships
between all these entities. This approach falls in line with efforts to employ ontologies
or semantic web technologies for expressing and evaluating access rules, e.g., the
work of Hachem et al. [120] and Giunchiglia et al. [114]. Towards the future, EBAC
can be an interesting evolution from ABAC in which even more fine-grained rules
can expressed. For example, the common e-health rule “a physician can only access
data of patients whom he treated in the last six months” is hard to express in ABAC,
but can easily be expressed in this model.

2.2.4 Beyond permissions: executing operations with an access
decision

The previous section described how we can express which subjects can perform
which actions on which resources. An interesting extension to this is the concept of
obligations [177, 117, 171].

26 BACKGROUND

Obligations are statements of operations that must be executed by a subject or by
the access control system itself in conjunction with enforcing the access decision.
For example, such an obligation can specify that the subject should agree to terms
and conditions before being granted access. Similarly, an obligation can be used to
specify that the system should write a log of the access decision or that it should
notify a system administrator that access has been denied to an extremely confidential
resource. As a final and important example, an obligation can also specify that an
attribute should be updated because of the access decision, e.g., the number of times
that a resource has been accessed.

This work takes into account obligations and Chapter 6 builds upon them to model
history-based policies. While Park and Sandhu [171] make a distinction between
obligations that should be executed before permitting or denying an action, during
the action or after the subject has performed it, this work only employs the former.

2.3 Policy-based access control

After access rules have been defined in one of the models described in the previous
section, these rules have to be expressed in a machine-readable format in order to
actually enforce them.

The most straight-forward option is to incorporate these rules in the code of the
application. This approach however has several disadvantages. The first disadvantage
is that in order to update the access rules, the application code has to be changed
and the application has to be recompiled and redeployed every time. Secondly, as a
result of the previous, the access rules cannot vary dynamically at run-time either,
which is needed for some applications. Thirdly, this approach has the disadvantage
that the application developers are occupied with both application logic as well as
access control logic. This violates the software engineering principle of separation of
concerns [172], which can be disadvantageous for security as discussed by De Win
et al. [80]. Finally, this approach makes it hard to analyze the complete set of access
rules that are enforced on an application.

The approach of policy-based access control [190, 181] aims to address these
disadvantages by modularizing the access rules with regard to the application code.
To achieve this, policy-based access control separates the specification of the access
rules from the mechanisms that enforce them by expressing the rules in declarative
access control policies (or just policies in this thesis). Whenever an access decision is
needed, these policies are interpreted (or “evaluated”) by a specialized component in
the application called the policy evaluation engine or policy decision point [5]. As a
result of this approach, the access rules can be specified and updated without having
to change the application code and an application developer can focus on application

POLICY-BASED ACCESS CONTROL 27

logic while a security expert can focus on the access rules themselves. In addition, this
approach enables selecting the appropriate access rules at run-time. This is especially
interesting for applications with run-time variability in the access rules, such as the
SaaS applications considered in this thesis. Finally, because the access rules are now
represented as a separate software artifact, this approach enables the (automated)
analysis of the access rules that hold for an application.

The concept of policy-based access control stems from the 1990s. Notable early work
in this domain is the work of Sloman [190]. He describes a system and language for
policy-based access control that supports both positive and negative authorization
and obligation rules. Afterwards, this work evolved into the influential Ponder policy
specification language [79] (also see Section 2.3.1). Also notable is the work of Blaze
et al. [50] who combine the concept of policy-based access control with security
credentials (e.g., X.509 certificates [191]) into the notion of “trust management” for
internet applications and provide a practical implementation called PolicyMaker.
Finally, we want to highlight the formal work of Schneider [186] who introduces the
concept of security automata to describe and reason about which rules certain types
of policies can effectively enforce.

In a broader sense, policies represent a fundamental software engineering tactic that
separates semantics from enforcement and describes these semantics declaratively. As
such, policies are being applied for a large variety of goals in the domain of distributed
systems in addition to access control. Amongst others, Bacon et al. [36] employ policies
for information flow control in multi-domain applications, Wun and Jacobson [211]
for managing content-based publish/subscribe middleware, Kumar et al. [140] for
describing self-management behavior and Walraven et al. [202] for customizing
applications. Moreover, policies also have a long history of being used for network
management [121]. Finally, policies also align to other software modularization
techniques, such as aspect-oriented software development [101]. As a result of
this, policies are faced with similar challenges such as the correct composition with
application code as discussed by Lagaisse and Joosen [141]. In addition, policies and
aspects can be combined, for example to automatically weave policy enforcement
points into application code, as discussed by Verhanneman et al. [201].

As a side remark, notice that the term “access control policy” is overloaded in literature
and is used to denote at least two concepts [192]. On the one hand, this term is used to
denote the laws and regulations of an organization about security and access control,
independent of how they are written down or enforced. On the other hand, this term is
used to denote the software artifact in which these regulations are effectively realized
so that they can be interpreted by a software system. As we employ policy-based
access control mainly as a software engineering tactic for modifiability and separation
of concerns, this thesis follows the latter meaning.

As a second side remark, notice that models such as lattice-based access control and

28 BACKGROUND

role-based access control are sometimes referred to as examples of policy-based access
control as well (e.g., in the work of Samarati et al. [181]). Indeed, these models allow to
define the permissions of subjects at run-timewithout having to change the application
code and thereby allow to encode the access regulations of an organization. However,
in these models, there is no software artifact that contains the access rules themselves.
In other words, these models allow to configure access control data such as roles, but
the rules themselves are hard-coded in the approach, e.g., “permit if the subject has
the appropriate permission through activated roles, deny otherwise” for RBAC. In
this thesis, we employ the more specific meaning of policy-based access control in
which the access rules themselves can be configured and changed at run-time, an
approach that provides more flexibility.

In the rest of this section, we elaborate on languages for expressing access control
policies and discuss the reference architecture for policy-based access control systems.

2.3.1 Policy languages

In order to express the access rules in a policy, a policy language is required. During
the last two decades, multiple such languages have been proposed. In this section,
we first give an overview of these languages and then zoom in on XACML [5] and
STAPL [89]. Appendix A provides an extensive example of a STAPL policy from the
case study of electronic document processing (see Section 1.4.1) and illustrates the
wide range of access rules that can be expressed using XACML or STAPL.

Overview

In the early work on policy-based access control, multiple policy languages were
proposed for the specific purposes of the authors (e.g., [190, 50]). Following on that,
a large number of more generic policy languages was proposed in the beginning of
the 2000s, such as the SPL policy language in 1999 by Ribeiro et al. [177], Ponder in
2001 by Damianou et al. [79], EPAL in 2003 by the W3C consortium [35], XACML
in 2003 by the OASIS standardization committee [117], Cassandra in 2004 by Becker
and Sewell [43] and SecPAL in 2006 by Becker et al. [42] (for an broader overview of
such policy languages, we refer to [121]).

All of these languages allow to express access control policies, although EPAL has
a specific focus on privacy and SecPAL has a specific focus on trust relationships
in distributed systems. All of these languages are also attribute-based and allow
to express multiple access control concepts such as identity, ownership roles, and
separation of duty, and domain-specific concepts. In addition, Ponder and Cassandra
provide specialized features for roles, while the others model roles as any other

POLICY-BASED ACCESS CONTROL 29

attribute. Cassandra and SecPAL differ from the others in their foundation on formal
logic, i.e., they are implemented based on DataLog. Moreover, as opposed to the others,
Cassandra and SecPAL only support positive rules, i.e., they only allow to express
which actions are permitted and not which actions are explicitly denied in certain
situations. Finally, it is worth noting that although SPL is the earliest language in this
overview, it contains advanced features such as typed entities with existential and
universal quantifiers that resemble the current evolution towards relationship-based
access control (see Section 2.2.3).

Of these languages, this thesis primarily builds upon XACML [5].

XACML

we focus on the more practical policy languages (as opposed to the more formal
languages). More specifically

This thesis builds upon XACML [5]. There are multiple reasons for this. First and
foremost, this thesis aims to achieve applied and industry-relevant contributions. In
this regard, XACML currently is the de facto standard for expressing access rules in
practice and is also widely used in literature (e.g., [157, 92, 152, 160, 176, 158, 33, 69]).
Secondly, XACML also provides a number of interesting and state-of-the-art features.
For example, XACML is attribute-based and thereby allows a wide spectrum of rules
to be expressed, including domain-specific concepts. In addition, XACML allows
both positive and negative rules to be expressed, which facilitates more fine-grained
rules [177]. Finally, XACML supports obligations, which amongst others are required
to express history-based rules (see Chapter 6). A third reason why this thesis builds
upon XACML is that it was also supported by a practical and open-source policy
evaluation engine [7] when this work started.

In addition to expressing policies using attributes, XACML also structures policies as
policy trees [53]. In such policy trees, multiple rules are combined into onewell-defined
policy by having each intermediate node of the tree specify to which requests its
children apply by means of a target. As such, these policy trees provide a technique
to modularly structure and edit a policy.

In XACML, the policy trees consist of three main elements: Rules, Policies and Policy
Sets. A Rule specifies an effect (Permit or Deny) and an attribute-based condition
for this to hold. A Policy contains one or more Rules and a Policy Set contains one
or more Policies or other Policy Sets, which enables policy trees of arbitrary depth.
Each of these elements can specify an attribute-based target that specifies to which
requests it applies. If this target evaluates to false, the result of evaluating the element
is NotApplicable and the children or the condition are not evaluated further. In
case this target evaluates to true, the children of a Policy or Policy Set are evaluated

30 BACKGROUND

depth-first; for a Rule, the condition is evaluated and the result is the specified effect
in case it evaluates to true or NotApplicable otherwise. In essence, this behavior
makes XACML a three-valued logic. After the result of all its children is known, a
Policy or Policy Set combines these results into its own result that bubbles up in
the tree. In addition, every Rule, Policy and Policy Set can specify obligations (see
Section 2.2.4). These obligations are defined to be fulfilled on a certain result (Permit
or Deny) and because the final result is only known at the end of the policy evaluation,
these obligations are only fulfilled after the whole policy is evaluated as well.

An important feature of XACML is that the Rules can specify both a Permit and a Deny.
In other words, XACML allows to express both positive rules, i.e., rules that permit a
certain action, as well as negative rules, i.e., rules that deny certain actions. As a result
of this, the XACML policy trees can contain conflicting rules, i.e., a request can be
permitted by some rules and denied by others. In order to address such conflicts, the
Policies and Policy Sets combine the results of their children by means of specialized
combination algorithms such as DenyOverrides (which gives precedence to a Deny
over a Permit) or FirstApplicable (which returns the result of the first applicable child
in the order in which the children were specified). As a result, the policy trees of
XACML also enable and force the policy author to reason about possible conflicts
between rules in addition to enabling modular policies.

In essence, the concept of a policy tree with the combination algorithms was already
present in literature before XACML (e.g., [177, 53, 54]). Afterwards, it received
additional attention because of its interesting properties (e.g., [160, 148, 176, 32, 77]).
The first version of XACML itself was defined as an OASIS standard in 2003 [117],
followed by v2.0 in 2005 [165] and v3.0 in 2013 [5]. This thesis builds upon the core
model of XACML, which remains unaltered across these three versions.

STAPL

While XACML encompasses a powerful model for expressing access control policies, it
encodes these policies in XML. While this format in theory improves transportability
and interoperability, it also makes XACML policies verbose and hard to read and
write for human users.

A possible approach to address this issue is to generate XACML policies from a more
human-friendly format. For example, the companies WSO2 and ForgeRock both
provide a graphical interface to construct XACML policies as part of their products
WSO2 Identity Server [10] and OpenAM [9]. Similarly, the company Axiomatics
provides a more human-friendly language to generate XACML called the Axiomatics
Language for Authorization (ALFA, [57]). A drawback of this approach however is the
abstraction gap between the policies declared in the editor and the policies evaluated

POLICY-BASED ACCESS CONTROL 31

at run-time. For example, any run-time errors or logs have to be translated back into
the abstraction of the editor, a feature that is not supported yet by these technologies.

Because XACML is hard to use and because of the disadvantages of these existing
approaches, we defined and developed an easy-to-use attribute-based tree-structured
policy language ourselves. This language is called the Simple Tree-structured
Attribute-based Policy Language or STAPL [89]. STAPL is a user-friendly representa-
tion of the core concepts of XACML, i.e., policy trees with attribute-based expressions
and obligations. As a result, any basic STAPL policy has an equivalent representation
in XACML. STAPL is currently defined as a DSL in Scala and is supported by an
efficient parser and evaluation engine.

Supported access control concepts

Both XACML and STAPL allow to express a wide spectrum of access control concepts
(or policy idioms [43, 42]). For example, these languages support roles, ownership,
time and location, as well as domain-specific concepts such as assigned customers.
Appendix A illustrates these concepts based on an extensive policy from the case
study of electronic document processing (see Section 1.4.1).

2.3.2 The reference architecture for policy-based access control
systems

In addition to a policy language, the XACML standard also defines a reference
architecture for policy-based access control systems. This architecture was in essence
already implicitly present in early work on policy-based access control (e.g., [50, 190]),
but was ratified IETF and DMTF [209] and later refined in the XACML standard [117].

This reference architecture is illustrated in Figure 2.5 and consists of the following
components:

• The Application represents the application logic from the point of view of the
access control system.

• The Policy Decision Point (PDP) is responsible for actually making the access
control decision by evaluating the applicable policies loaded from the PAP.

• The Policy Enforcement Point (PEP) is responsible for requesting an access
decision from the PDP when the application requires one. The PEP can be
closely integrated with the application (e.g., as an API or using more advanced
techniques such as an inline reference monitor [98] or aspect weaving [201])
but can also be an external interceptor such as a firewall.

32 BACKGROUND

Figure 2.5: The reference architecture for policy-based access control systems [117].

• The Policy Information Point (PIP) is responsible for providing values for the
attributes of the subjects, the resources and the environment. For example, a
PIP can be a database, a directory, a web service or even just a piece of software
that returns the current date.

• The Context Handler is responsible for managing the communication between
the PEP, PDP and PIP. More precisely, the context handler converts decision
requests, decisions, attribute requests and attribute values from their native
formats into the XACML format and vice versa.

• The Policy Administration Point (PAP) is responsible for managing the policies
in the access control system and providing them to the PDP. For example, a PAP
can be a file system of policy files, a database, a web service or a combination
of these with an administration interface for end-users.

• The Obligation Service is responsible for executing any obligations in an access
decision. The exact instantiation of an Obligation Service depends on its
supported type(s) of obligations, for example a log service for writing logs,
an e-mail service for sending e-mails or the same attribute database that is
behind a PIP for updating values of attributes.

Notice that this architecture is a logical architecture in the sense that it defines the
components of a policy-based access control system, but does not define the number
of instances of these components in this system or how these are deployed. For
example, a large-scale application can employ a policy evaluation engine as PDP that
is hosted on a dedicated machine in the network and that employs three attribute
databases as PIPs. A firewall on the other hand can be regarded as a PEP, PDP and
PAP at the same time and may not even employ a single PIP.

FEDERATED ACCESS CONTROL 33

Resulting authorization protocol. The authorization protocol that results from the
architecture of Figure 2.5 is as follows. When the PEP requires an access decision, it
sends a decision request to the PDP through the context handler. This request consists
of information about the subject, the resource, the action and the environment in the
form of attributes. In order to allow the PDP to request other attributes during the
policy evaluation, this request should at least specify the subject that wants to perform
the action and the resource on which the subject wants to perform it, both by means
of their identifiers. If possible, the PEP can also provide statically known attributes,
such as attributes of the subject that are cached in the user session in the application.
The context handler converts the native decision request of the PEP into the XACML
format and forwards this to the PDP. The PDP then evaluates the policies loaded
from the PAP for this request. Because the required attributes for evaluating a policy
depend on the values of former attributes, it is generally impossible to determine the
set of required attributes up-front and the PDP can request additional attributes from
the PIP through the context handler when needed. Eventually, the PDP reaches an
access decision and returns this to the PEP through the context handler. The PEP
then fulfills any obligations in this decision using the Obligation Service and if all
obligations were fulfilled correctly, it enforces the decision.

2.4 Federated access control

In addition to attribute-based access control and policy-based access control,
Chapters 4 and 5 of this thesis build upon techniques for federated access control.

Federated access control is concerned with access control for applications in
which multiple organizations collaborate. This organizational structure is called
a federation [94]. More specifically, a federation can be defined as an organizational
structure in which multiple organizations have set up collaboration agreements, but
do not necessarily trust each other completely and remain separate domains in terms
of security and administration. Because multiple organizations collaborate with
limited trust in federated applications, access control is of great importance to them.

SaaS applications are a specific and contemporary type of federated applications. In
this case, the federation comprises the SaaS provider and its tenants. In addition to
SaaS, other types of federations exist as well. For example, a large body of research
exists on grid computing, which aims to facilitate resource sharing across multiple
organizations [106]. More recently, the maturation of web applications has lead to
the need for scalable and secure access control management when employing remote
applications. As many of these challenges align with the challenges of this thesis,
these domains contain research and access control techniques related to this work.

In this section, we give an overview of this research. More precisely, we give an

34 BACKGROUND

overview of the access control research performed in the domain of grid computing
and then describe some of the more recent and standardized technologies that we
employ from the domain of web applications. First, we highlight two technologies
that these domains have built upon: Kerberos and the Public Key Infrastructure.

2.4.1 Early techniques for federated access control: Kerberos and
the Public Key Infrastructure

In this section, we highlight two influential examples of early authentication
technologies: Kerberos and the Public Key Infrastructure (PKI).

Firstly, Kerberos [168] is a distributed authentication system developed at MIT in
the 1980s. Kerberos mainly addresses the problem of strongly authenticating users
in a distributed network of servers without this user having to provide his or her
password to every server as this lowers usability and facilitates password theft. To
do so, Kerberos introduces an authentication server to this network (see Figure 2.6).
Every server in the network knows the cryptographic key of the authentication server
and vice versa.

The resulting authentication protocol is as follows: When a client, e.g., a user, wants
to make a request to a server, it first contacts the authentication server (step 1). The
authentication server then authenticates the client locally (steps 2 and 3) and returns
a Kerberos ticket (step 4). This ticket contains information about the client, a unique
session id and an expiration time. The ticket is encrypted using the cryptographic
key of the server so that the client cannot modify it and the session key is encrypted
with the key of the authentication server so that the application servers can verify

Figure 2.6: The Kerberos protocol for authenticating a client across a network of
servers [168].

FEDERATED ACCESS CONTROL 35

the validity of the ticket. As such, the client can present this ticket to an application
server as proof of its authentication (step 5). This server then checks the validity of
this ticket and returns the requested resource (step 6).

In summary, this flow can authenticate users to servers without sharing their
passwords while at the same time protecting against eavesdropping and replay
attacks. For cross-organizational authentication, this flow can be extended with
a ticket granting service that converts a local ticket from the home organization of the
user to a ticket that can be used to access the servers in the other organization. Thus,
in essence, trust between multiple servers or organizations is established in Kerberos
by configuring keys. As we will see later on, this approach and this authentication
flow is taken on in more recent technologies for federated authentication.

As originally described byNeuman, Kerberos employs symmetric keys [168]. Amongst
others, this has the disadvantage that the key of the authentication server has to
be shared with every server in this network, increasing the chances of stealing this
key. An alternative approach to symmetric keys is public key cryptography. In this
approach, every entity has a private key and an accompanying publicly disclosed key.
These two keys are constructed so that when entities encrypt data with their private
key, others can then decrypt this data with the public key of this entity. Amongst
others, this approach can be used to prove that an entity owns a certain private key
without disclosing it, which is a powerful form of authentication. The problem then
becomes how to prove that a certain public key belongs to a certain entity.

The Public Key Infrastructure (PKI, [191]) addresses this problem by binding public
keys to entities using signed certificates that can be requested from certificate
authorities. In turn, the validity of these certificates can be recursively verified
based on the public key of these authorities until a trusted root certificate is reached.
As such, the PKI can be used to achieve secure and authenticated communication
between two parties without requiring a direct trust relationship on beforehand. In
addition, the PKI can be used to authenticate entities by itself, i.e., by linking the
identity of an entity to that entity using a certificate. This approach can be extended
to link any generic attribute to an entity, an approach that forms the basis of many
authorization approaches in grid computing.

2.4.2 Access control in grid computing

As defined by Foster el al. [106], grid computing is concerned with coordinated
resource sharing and problem solving in dynamic, multi-organizational virtual
organizations. In other words, multiple organizations set up a collaboration in which
they open up their resources such as computing power or research data for direct
access by other organizations. This leads to sharing relationships ranging from client-
server to peer-to-peer, and from long-lived and static to ad-hoc and highly dynamic.

36 BACKGROUND

Because resource providers want to clearly state which resources can be shared
with whom under which circumstances, access control is of great importance to
grid computing. However, access control in this domain is faced with additional
challenges compared to traditional access control, as for example discussed by Foster
et al. [105] and Welch et al. [208]. For example, an organization can employ resources
or services of multiple other organizations, but having to duplicate the access control
management for every such service will incur too much management overhead. As a
result, these federated application require techniques for scalable, e.g., centralized,
access control management. As another example, both the resource owner, the home
organization of a user as well as a the virtual organizationwant to constrain the actions
of this user on these resources. As a result, grids require techniques for securely
combining the access control of multiple organizations. As a final example, it is not
realistic to assume that all organizations in a virtual organization employ the same
technology. As a result, grids require standardized techniques for interoperability.

Kerberos and the PKI have laid the basis for cross-organizational authentication in
grid computing. Building on this, the first approach for authorization is the so-called
grid-map file. This file maps the fully-qualified names of the authorized grid users to
accounts in the local operating system. This approach provides simple authorization,
but has the disadvantages of requiring all resource providers to update their grid-map
file when users enter or leave the virtual organization and only allowing the resource
owner to enforce access control.

Following on the grid-map file, multiple improvements have been proposed that
have influenced this work. Firstly, PERMIS [64] takes the step from identity-based
authorization to attribute-based authorization. More precisely, the resource provider
evaluates its policies based on the attributes of the authenticated subject that are
retrieved from the PKI. In addition, PERMIS specifies a policy language (that is later
superseded by XACML) and an authorization architecture using the components of
the reference architecture for policy-based access control systems (see Section 2.3.2).
Because of the attribute-based access control and the PKI, PERMIS avoids the need
for globally known subject identities and provides more scalable access control
management.

A second influential system for grid access control is the Community Authorization
Service (CAS, [173]). CAS was developed in parallel to PERMIS and aims to enable a
virtual organization to enforce access control on the actions of its members while at
the same time achieving scalable access control administration. The authors argue
that the solution to these challenges is that a resource owner should just grant access
to a virtual organization as a whole and that this virtual organization should restrict
which of its users can access which resources in a more fine-grained manner. To
achieve this, CAS takes on an authorization flow similar to the authentication flow
of Kerberos: when a user wants to access a resource, he or she contacts the CAS
Server of the virtual organization. This server authenticates the subject locally and

FEDERATED ACCESS CONTROL 37

evaluates its policies. If the subject is permitted to access the requested resource, that
server returns a capability token that expresses the identity of the virtual organization
and the permissions of the subject. The resource owner then verifies this capability
token and enforces its policies for this virtual organization as a whole. As such,
CAS combines the access control of both parties, but leaves the final decision to the
resource owner. Compared to PERMIS, CAS still opts for centralized user management
at the CAS server of the virtual organization, but on the other hand allows both the
resource owner and the virtual organization to express and enforce their policies.

Apart from PERMIS and CAS, other systems have been proposed. Firstly, VOMS [30]
can be seen as an extension to CAS in which the central server can return subject
attributes instead of only permissions. Secondly, PRIMA [156] takes a similar approach
as PERMIS and additionally focuses on self-management by users and dynamic
mapping of subjects to local accounts with the appropriate privileges. Thirdly,
Akenti [197] aims to enable multiple stakeholders to express access policies on a
resource by storing these as signed certificates in a virtual organization-wide Akenti
server. While this could be an interesting generalization of CAS, the authors discuss
their proposed policy language, but do not discuss the user management infrastructure
or how the different policies are correctly combined. Finally, Cardea [147] focuses on
access control from the point of view of the resource provider and opts for XACML
policies combined with SAML attribute queries (see later on) instead of the PKI for
interoperability. A similar approach is taken later on by Welch et al. [207].

In general, the multiple access control systems for grid computing together have
laid the basis for current federated access control techniques. Moreover, these
systems demonstrate the advantages and disadvantages of different deployments of the
components in the reference architecture, e.g., centralized versus decentralized [189],
and of related tactics, e.g., pushing versus pulling attributes. As a result, these
approaches have influenced this work, especially our work on federated authorization
in Chapter 4.

However, one important difference between grid computing and SaaS applications is
the goal of access control. More specifically, the goal of most of the systems discussed
in this section is to enable the resource provider to protect its resources based on its
own access rules. This is similar to the provider wanting to protect its SaaS application
as a whole. However, SaaS access control should also enable a tenant to protect its
resources located at the provider. This is a fundamentally different trust model that
amongst others leads to the need to enable tenants to configure their own users and
enforce their own policies on the SaaS application. Because this set-up is similar to the
set-up of the resource provider and the virtual organization in CAS, CAS can be seen
as the most important influence to our approach for SaaS access control, especially to
the work in Chapter 4.

For more information about the systems mentioned in this section, we refer to the

38 BACKGROUND

multiple surveys of access control techniques for grid computing, such as the one of
of Colombo et al. [70] or Jie et al. [126].

2.4.3 Federated access control in web applications

Grid computing was an important example of federated applications in the early 2000s.
During that period, web applications matured and as larger organizations started
to use them, the need for security and scalable access control management in this
domain grew as well. As a result, multiple important technologies were developed
in the domain of web applications, building on the previous experience in amongst
others grid computing. Because SaaS applications often employ web technology in
practice, these technologies can provide the basis for the work in this thesis.

In this section, we discuss two of the most important technologies in this domain:
federated authentication and OAuth. Note that we do not discuss techniques for
federated access control for web services such as WS-Security [144], WS-Policy [37],
WS-Trust [167] and WS-Federation [38]. These techniques mainly target service-
oriented systems and are not used in SaaS or web applications. Moreover, the
technologies that are discussed in this section can be seen as the current instantiation
of the core concepts discussed in these standards.

Federated authentication

Afirst important federation technique from the domain of web applications is federated
authentication [2, 6]. Authentication is the part of access control that confirms
the identity of a user, for example by checking the combination of a username
and password. Federated authentication externalizes this authentication from an
application so that it can be performed by a trusted external party. Amongst others,
this approach can be used to centralize authentication and the related user data at the
premises of a single organization. For a web application, this approach enables an
organization to employ the application without having to duplicate their user data or
the management of this data. Additionally, this approach allows the organization to
employ their preferred means of authentication and the credentials of the members
of the organization are not disclosed to the application.

In order to achieve federated authentication, the application and the organization
should be able to communicate. There are currently two major standards for this
communication: SAML [2] and OpenID [6]. Of these two, SAML is the most extensive.
More precisely, OpenID only supports a fixed set of attributes to be shared between
both parties and only supports a single protocol. SAML on the other hand specifies

FEDERATED ACCESS CONTROL 39

Figure 2.7: A common protocol for federated authentication through the web browser
of the user [6, 2].

an extensible XML format for the messages exchanged between the two parties and
defines a set of protocols and their bindings to common technologies such as HTTP.

A common example of the protocols supported by SAML (and the one also supported
by OpenID) is illustrated in Figure 2.7. In this figure we employ the terminology
of SAML, which talks about two parties: the Service Provider (SP) and the Identity
Provider (IdP). For a web application or a SaaS application, this Identity Provider most
commonly is the home organization of the subject or a third party that manages the
members of this organization. The protocol between both parties to authenticate
a subject is then as follows: The subject makes a request to the application of a
certain Service Provider (step 1). In order to authenticate the subject, this application
redirects the end-user to the authentication service of his or her Identity Provider
accompanied by an authentication request (step 2). Two example approaches to
achieve this are an HTTP redirect or returning and automatically submitting an HTML
form. The authentication service authenticates the subject locally using any preferred
method (steps 3 and 4). If the authentication was successful, the authentication
service redirects the end-user to the application accompanied with an (encrypted)
authentication statement (step 5). This statement contains at least an identifier for
the subject and possibly his or her attributes. The application logs the subject in, for
example by setting a cookie (step 6). Finally, the application checks the authorization
of the user and returns its response to the subject if permitted (step 7). Notice that if
the subject has an active session with the authentication service, steps 3 and 4 can be
omitted in order to achieve Single Sign-On across the multiple applications that the
organization employs.

The approach explained in Figure 2.7 is employed in practice by amongst others
Google and Facebook to allow users to log into other applications using their Google
and Facebook accounts, e.g., the “Login with Facebook” button. Apart from enabling
centralized user management and the other advantages for organizations discussed

40 BACKGROUND

above, this approach also has the ability to lower password reuse and relieves the
service provider of credential management.

Notice that this approach aligns closely with attribute-based access control. More
precisely, federated authentication can be used to share the attributes of the subject
for use in authorization later on. Moreover, federated authentication can be sued to
share the attributes of the subject without sharing its identity, which benefits privacy.

OAuth

A second important federation technique in the domain of web applications is
OAuth [122]. While SAML and OpenID target authentication, OAuth can be regarded
as a basic form of federated authorization.

The goal of OAuth is to securely enable third-party applications called clients to access
a specific part of the resources of a user in a web service without requiring that
user to be present. Common examples of these clients are mobile apps or other web
applications. Before OAuth, the only option to achieve this was for the user to share
his or her credentials for the web service with this client. This approach has the
disadvantages of increasing the chance of password theft, of only being able to grant
a client access to all of the resources of the user and of only allowing to revoke access
for all clients at once. To address these shortcomings, OAuth provides these clients
with a unique authorization token that the service knows of to which resources of
which user it grants access.

The OAuth protocol (illustrated in Figure 2.8) bears some similarity to Kerberos and
is as follows: First of all, every client that wants to access a certain web service
has to agree on a credential to authenticate itself, e.g., a unique client id obtained
from the service provider. When a client then wants to access the resources of a
certain user in a certain web service for the first time, e.g., when installing an app or
registering for a web application, it requests an authorization grant for these resources
from the authorization server of this web service, e.g., by redirecting the user to the
authorization server or by presenting a web page in the app (step 1). The authorization
server authenticates the user and asks him or her for consent, thereby presenting
information about the client and the resources that it wants to access (step 2). If
the user consents (step 3), the authorization server generates a unique authorization
token, stores for which client, user and resources this holds and returns this token
to the client (step 4). When the client wants to effectively access the resources of
the user, it presents its client credentials and the obtained authorization token to the
authorization server (step 5). The authorization server checks these credentials and
the authorization token and if the user has not revoked the consent for this client,
the authorization server returns a temporary access token to the client (step 6). The
client then requests the resource from the web service accompanied by the received

FEDERATED ACCESS CONTROL 41

Figure 2.8: The OAuth protocol for granting a client access to the resources of a user
in a web service without having to share the credentials of that user [122].

access token (step 7). The web service checks the access token and if valid, returns the
resource to the client (step 8). Notice that the access token is valid for only a limited
time. After that time, the client has to request a new access token using a similar
protocol as before.

OAuth is currently used by amongst others Google, Facebook and Twitter to allow
mobile apps and web applications to interact with their services. Compared to the
techniques explored in this thesis, the possible access rules that can be enforced
however are rather limited because of the limited shared information and the one-time
authorization.

Recent advances: OpenID Connect

Following on OpenID and OAuth, OpenID Connect was recently proposed [180].
OpenID Connect provides similar functionality as OpenID, i.e., obtaining information
about the subject in a federated setting, but does so by building on OAuth 2.0. As
such, while OpenID could only be used from a web application, OpenID Connect can
be used by web applications as well as by mobile or native applications. We do not go
deeper into OpenID Connect as we do not build upon it.

42 BACKGROUND

2.5 Performance of policy-based access control

Access control research is continuously trying to facilitate efficient access control
management, amongst others by enabling more fine-grained access rules. However,
access control should be enforced on most, if not all requests to an application.
Therefore, the latency overhead of access control should be limited to avoid obstructing
the intended use of this application. As a result, access control research is faced with
the continuous challenge of supporting increasingly fine-grained access rules while
incurring only a limited latency overhead. This challenge is further enlarged by
the approach of policy-based access control which improves modularity by adding
indirection and possibly network communication. Because of the importance of
performance, strong and acceptable performance also is a requirement for the
contributions of this thesis.

Apart from our work, other authors have also focused on the problem of efficient
access control. As a result, this thesis fits into a growing body of work on access
control performance. In this section, we give an overview of this work structured by
the different employed performance tactics.

Tactic 1: Caching

A first and well-known tactic to improve the performance of a system is caching. In
policy-based access control, there are multiple targets for caching. For example, one
can cache the attributes so that less attributes have to be fetched from the database in
subsequent policy evaluations. Similarly, one can cache access decisions in order to
completely avoid evaluating the policy again for a certain subject, resource or request.

An important observation for this technique is that caching can impede security.
More specifically, attributes can change value over time, e.g., because of out-of-band
attribute updates such as administrator actions or because of in-band history updates
for dynamic separation of duty policies. In this case, caching an attribute can result
into using stale information and therefore making incorrect decisions. As a result,
cache invalidation and cache consistency are important topics when applying caching
to access control, as also discussed by Gheorghe et al. [113].

Surprisingly, little general work exists about caching in access control. Amongst
others, Borders et al. [55] describe a general framework for single-node decision
caching and spend explicit attention to customizable cache invalidation. Minami and
Kotz [163] then focus on caching of formal statements (which can be attributes and
decisions in our terminology) in a system for distributed policy evaluation. They
employ a publish-subscribe system with periodical freshness messages to decrease
the inconsistency windows of the cache.

PERFORMANCE OF POLICY-BASED ACCESS CONTROL 43

Tactic 2: Decision inference

A tactic related to caching that has received more attention in literature is decision
inference. Decision inference extends decision caching by trying to infer new decisions
from those in the cache without having to contact the PDP. This can be applied to
further improve the throughput, latency and availability of the system.

Decision inference was first proposed by Crampton et al. [76] in their Secondary and
Approximate Authorization Model (SAAM). In their original paper [76], they apply
this approach to lattice-based access control where the lattices of security labels can
be used as basis for inferring new decisions. Alternatively, Wei et al. [204] apply
this technique to RBAC systems, in which decisions can be inferred based on the
role hierarchies. Tripunitara and Carbunar [198] then extend this work with efficient
active cache updates using Bloom filters. In addition, Wei et al. [205] also extend
SAAM to a distributed system of cooperating decision caches.

Tactic 3: Pre-evaluating policies

A third possible tactic is to pre-evaluate a policy for a future request and cache the
decision so that the actual authorization check for that request later on does not
require a policy evaluation any more. As suggested by Beznosov [48], this tactic can
also be combined with SAAM for increased effectiveness.

The challenge for this tactic is to know for which requests to pre-evaluate the policy.
In this respect, Kohler and Schaad [134] tackle this problem in the context of business
processes in which case users often follow multiple steps expressed as workflows.
In [132], the authors go deeper into the employed caching strategy and in [133]
they compare the performance of this technique with SAAM and traditional caching.
Compared to the work of Kohler and Schaad, Kini and Beznosov [131] take a more
generally applicable approach by predicting future requests of the user based on its
previously observed behavior.

Notice that while these approaches can decrease the latency of policy evaluation from
the point of view of the end-user, the PDP will have to process more requests. As a
result, the PDP will have to be able to scale out or these tactics should only be applied
when the load allows it.

Tactic 4: Refactoring the policies

Another possible tactic to improve performance is to refactor the policies to a more
efficient form as these policies are often not written with performance in mind. Of

44 BACKGROUND

course, this refactoring should maintain the semantics of the policy, meaning that the
refactored policy should provide the same decisions as the original policy.

In this space, Miseldine [164] proposes to statically refactor a policy tree for
minimizing the overhead of matching the targets in the tree. Similarly, El Kateb et
al. [96] propose to split a policy into multiple smaller policies based on the employed
attributes. Finally, Marouf et al. [158, 159] propose to reorder the rules in policies
based on run-time statistics of employed attributes in order to reach a decision faster.
Complementary to these techniques, Kolovski et al. [135] propose a formalization of
XACML using description logic that can, amongst others, be used to prune redundant
rules from policies, i.e., rules that are always overridden by another rule in the tree.

Tactic 5: Optimized policy evaluation engines

Next to optimizing the policies, the internal workings of the policy evaluation
engine itself can also be optimized. An influential example of this approach is
XEngine [152, 151]. XEngine converts string elements in a policy to equivalent
numerical representations for more efficient comparison and flattens a policy tree for
more efficient evaluation. This approach however can only be applied to a sub-set of
XACML [174]. As an alternative approach, Pina Ros et al. [174] propose to optimize
policy evaluation using binary decision diagrams, which poses less constraints on
the policies. Complementary, Griffin et al. [118] propose to translate XACML policies
into JSON and employ JavaScript features such as non-blocking I/O for more efficient
evaluation. Finally, Marouf et al. [158, 159] specifically focus on the problem of
efficiently locating matching targets in large sets of policies or rules by clustering
these based on the applicable subjects.

Tactic 6: Efficient attribute fetch

In addition to the previous, a more specific target to optimize a policy evaluation
engine is the fetching of attributes. The idea that fetching the required attributes
during policy evaluation has a large impact on its latency was posed by Brucker
and Petritsch [58]. In their idea paper, they suggest to pre-compute sets of required
attributes by statically analyzing the policies in order to fetch multiple attributes at
once. Their evaluation suggests that this tactic has the ability to gravely improve
policy evaluation time. The observation that attribute fetch has a large impact on
policy evaluation time has had a large impact on this work.

PERFORMANCE OF POLICY-BASED ACCESS CONTROL 45

Tactic 7: Distributed policy evaluation

A final tactic to improve the performance of policy-based access control is to distribute
policy evaluation. For example, this tactic can be employed to concurrently evaluate a
policy onmultiplemachines formultiple requests, which leads to increased throughput
of the system. By then increasing the number of machines and dividing the load over
these machines, the capacity of the system can be increased when needed.

In this regard, Chadwick [62] was one of the first to describe a distributed policy
decision point. He proposes to achieve coordination by using attribute updates
specified in obligations. Alzahrani et al. [31] extend his approach into a decentralized
network of policy decision point peers. On the more formal side, Gay et al. [111]
discuss service automata, which can be regarded as policy decision points that can
communicate with each other for coordinated distributed policy evaluation.

A more specific use case of distribution in access control is distributed policy
evaluation in the presence of distributed access control data. In this specific case,
the goal is to decrease the latency of evaluating a policy by bringing the policy
evaluation closer to the data that it requires instead of bringing the data to the
evaluation. Our technique of policy federation (see Chapter 5) falls into this category.
Before that, Bauer et al. [40] described this approach for access control policies in
the form of formal proofs. In their approach, the multiple sources of access control
data each evaluate part of the policy locally to reach a final decision more efficiently.
In [41] these authors discuss further performance optimizations of their system,
such as chaining and delaying expensive parts of the policy. Additionally, Lin et
al. [149] sketch a theoretical framework for policy decomposition and distribution
for optimized performance when taking into account the location of the attributes
required by this policy and their confidentiality constraints. This work has been an
important influence to our work on policy federation. A similar approach is discussed
by Minami and Kotz [162, 163].

All of the work mentioned in the previous paragraphs focuses on policies that only
read data. In case policies do update data however, concurrency issues can arise,
which can result into incorrect access decisions. Amongst others, this is the case
for history-based policies such a dynamic separation of duty policies. In this regard,
Janicke et al. [125] propose a formal model for the possible concurrency issues with
policy evaluation. On the more practical side, Dhankhar et al. [92] address these issues
using locking, but report on policy evaluation times of seconds. As an alternative
approach, Kelbert and Pretschner [130] discuss a decentralized system for policy
evaluation and build on the underlying database for concurrency control. Because
databases however inherently cannot avoid all inconsistencies due to concurrency
and scale to the size of SaaS applications at the same time, we describe an efficient
and scalable domain-specific scheme for concurrency control in Chapter 6.

46 BACKGROUND

Comparative performance evaluations

Finally, performance evaluations are required in order to evaluate the impact of each
of the performance tactics describe above. While most of the authors of these tactics
include performance evaluations for their specific tactics, some authors have extended
these into comparative performance evaluations that cover and compare multiple
tactics. For example, Komlenovic et al. [136] assess six approaches for RBAC caching
in the architecture of Wei et al. [204]. As another example, Turkmen and Crispo [200]
compare the performance of three open source XACML evaluation engines in terms of
policy loading and policy evaluation time. Finally, Butler et al. [60] build and validate
a performance model for policy evaluation engines in order to predict the impact of
new performance tactics.

One important issue in these performance evaluations is that the performance of
evaluating a policy depends heavily on the structure of this policy, e.g., the number
of elements in the policy tree, the number of required attributes and the number
of attributes that still have to be fetched from the database. As a result, some
authors opt for employing policies used by other authors to achieve a fair comparison
(e.g., Komlenovic et al. [136]). In our work, we take a different approach and opt
for employing a set of realistic policies that resulted from our case studies. A more
sustainable solution for the whole domain of access control however would be the
definition of a set of policies to be used in performance benchmarks, as also proposed
by Butler et al. [59]. In the past, this task was made difficult by the large number of
access control models and paradigms, but currently, such a benchmark seams feasible
with the growing adoption of the XACML standard that can express multiple of these
previous models.

2.6 Positioning of our contributions

The previous sections discussed the background technologies of this thesis. To wrap
up this chapter, we now position the contributions of this thesis in terms of these
technologies. Figure 2.9 illustrates an overview of this.

Contribution 1: the Amusa middleware for access control in a multi-tenant
context. Our first contribution is the Amusa access control middleware for multi-
tenant SaaS applications. Amusa provides three-layered incremental access control
management based on attribute-based policies (see Section 2.2.3). In addition, Amusa
securely combines the policies of the provider and all tenants by employing policy
trees (see Section 2.3.1). Amusa is novel in the way that it employs these technologies
to provide efficient, secure and performant multi-tenant access control management.

POSITIONING OF OUR CONTRIBUTIONS 47

Figure 2.9: Overview of the contributions of this thesis based on the background
discussed in this chapter. RPDP stands for Remote Policy Decision Point and is
introduced in Chapter 4.

Finally, Amusa also defines a supporting middleware architecture in terms of the
reference architecture for policy-based access control systems (see Section 2.3.2) and
employs attribute caching and policy deployment across multiple PDPs as configurable
performance tactics to lower the performance overhead.

Contribution 2: the concept of federated authorization. Our second contri-
bution is the definition and validation of the concept of federated authorization.
Complementary to federated authentication (see Section 2.4.3), federated authorization
externalizes policy evaluation from a remote application so that it can be performed
at the premises of another organization. For SaaS, this technique enables a tenant to
enforce access rules on a SaaS application without having to disclose these rules nor
the data required to evaluate them. In this thesis, we define a generic policy-based and
attribute-based middleware architecture for federated authorization. This architecture
employs SAML (see Section 2.4.3) and extends both the reference architecture for
policy-based access control systems (see Section 2.3.2) and the XACML policy language
(see Section 2.3.1).

48 BACKGROUND

Contribution 3: the technique of policy federation. Our third contribution is the
technique of policy federation. Policy federation automatically decomposes and
deploys the tenant policies across tenant and provider to evaluate the resulting parts
near the data they require as much as possible while keeping sensitive tenant data and
policies at the premises of the tenant. Again, this contribution employs attribute-based
tree-structured policies similar to XACML (see Section 2.3.1) to achieve correct results
and we define supporting middleware in terms of the reference architecture for
policy-based access control systems (see Section 2.3.2). With regard to the performance
tactics discussed in Section 2.5, policy federation falls in the categories of refactoring
the policies and distributed policy evaluation.

Contribution 4: scalable and secure concurrent evaluation of history-based
access control policies. Our fourth contribution is an efficient concurrency control
scheme specifically for access control. By leveraging the domain-specific behavior
of evaluating a tree-structured attribute-based policy (see Section 2.3.1), this scheme
is able to avoid incorrect access control decisions due to concurrency while at the
same time being able to scale to a large number of multi-core machines with limited
latency overhead. As a result, this third contribution enables a scalable distributed
PDP that supports history-based policies. As such, this contribution enables a scalable
deployment of the PDP component of the reference architecture (see Section 2.3.2)
and again builds upon the basic technologies of policy-based access control (see
Section 2.3) with attribute-based tree-structured policies (see Section 2.3.1). With
regard to the performance tactics discussed in Section 2.5, this concurrency control
scheme falls in the category of distributed policy evaluation.

2.7 Conclusion

This chapter presented the background of this thesis. This thesis builds on policy-based
access control combined with attribute-based tree-structured policies. Moreover, SaaS
applications are a type of federated applications and performance is a general concern
throughout this thesis. Therefore, this chapter first introduced access control in
general and then elaborated on common models for access control, the concept of
policy-based access control, supporting policy languages, the reference architecture
for policy-based access control systems, techniques for federated access control and
performance tactics for policy-based access control. Following on this background,
the next chapter presents the first contribution of this thesis, i.e., the Amusa access
control middleware for multi-tenant SaaS applications.

Chapter 3

Amusa: access control in a
multi-tenant context

This chapter presents the first contribution of this thesis: the Amusa middleware for
efficient access control management of multi-tenant SaaS applications. Application-
level access control is a key component of SaaS security. However, it is also inherently
complex because of the multiple parties that want to enforce access rules on the
shared SaaS application. In this regard, Amusa facilitates managing SaaS applications
by securely enabling the provider and the tenants to enforce their specific access
rules expressed in terms of attributes. In addition, Amusa also facilitates building
SaaS applications by encapsulating this complex functionality in easy-to-employ
middleware with low performance overhead.

This chapter is mainly motivated by the two industrial case studies of eDocs and
eWorkforce (see Section 1.4.1) and stems from the goal of addressing the challenges
from multi-tenancy. As such, this chapter focuses on the challenge of multi-tenancy
and the concerns of performance, low management overhead and low engineering
overhead (see Section 1.2). This chapter is based on our publication at the ACM
Symposium on Applied Computing 2015 [83].

49

50 AMUSA: ACCESS CONTROL IN A MULTI-TENANT CONTEXT

3.1 Introduction

SaaS applications employ application-level multi-tenancy to lower their operational
costs (see Chapter 1). In this approach, multiple tenants concurrently employ the
same code base, application instances and data store [119]. As a result, tenants cannot
be architecturally isolated from each other any more and application-level access
control is required to make sure that tenants cannot access each other’s resources
in the application. Moreover, this access control should also enable the provider to
constrain its tenants and should enable the tenants to constrain their own end-users,
preferably without requiring interaction with the provider (i.e., self-management).

As a result of these requirements, application-level access control is a highly important
part of security for SaaS, but also inherently complex. Providing this functionality is
even more a challenge because the access rules of the provider and the tenants vary
from case to case. For example, some applications require tenants to be fully isolated
while others require business partners to access each others resources. Also, some
providers want to constrain tenants based on a pre-paid model, others based on a
post-paid model. Similarly, some tenants want to constrain their employees based
on their region, others based on contracts, skills or departments. In addition, when
all these parties can express their access rules, these rules should also be combined
securely. For example, tenants should not be able to specify rules that override
the provider’s policies or give the tenant access to the resources of other tenants.
Finally, the appropriate rules should be dynamically bound and enforced in the shared
application at run-time with low performance overhead.

Figure 3.1: The Amusa middleware provides incremental three-layered management
of multi-tenant SaaS applications based on policy-based access control with attribute-
based tree-structured policies and encapsulates this functionality in reusable
middleware.

PROBLEM STATEMENT 51

As a result of this complexity, the state of practice in SaaS application development
does not achieve these requirements. Firstly, the provider’s policies about tenants
are often hard-coded in the application. Secondly, the tenant-specific access rules are
often supported using a simple role-based scheme. And thirdly, tenant isolation is
either hard-coded in the application or relies on isolation at the level of the data-store
such as using namespaced silos in Google App Engine [14]. As a result, the provider
policies are hard to customize, tenants are able to express only a limited set of access
rules and tenant separation is inflexible.

The state of the art in access control also does not meet these challenges. The
combination of policy-based access control [181] with attribute-based [123], tree-
structured [74, 148] policies supports the declarative specification of a wide range of
rules independent of the application code and binding these at run-time. However,
these bare technologies still require each SaaS provider to build a multi-tenant access
control layer on top of them. And even when employing these technologies, achieving
the requirements stated above is not trivial.

To address these issues, this chapter presents Amusa (Access control middleware for
Multi-tenant SaaS Applications, illustrated in Figure 3.1). Amusa allows both the
provider and all of its tenants to express their access rules for the SaaS application
using expressive attribute-based policies. Amusa combines these policies securely
and enforces them at run-time. In addition, Amusa encapsulates this complexity
in reusable middleware that requires low development effort of the provider and
simplifies the overall access control management using an incremental three-layered
approach. Finally, Amusa introduces low performance overhead using efficient policy
deployment and attribute fetching, configurable per provider and per tenant. Amusa is
motivated by the two industrial case studies of eDocs and eWorkforce (see Section 1.4.1)
and builds on a large body of work in access control and policy-based middleware.

The remainder of this chapter is structured as follows. Section 3.2 further elaborates
on the case studies and summarizes the requirements of Amusa. Section 3.3 describes
Amusa in terms of its employed technologies, its access control management, its
supporting middleware architecture and its development API. Section 3.4 evaluates
Amusa in terms of security, performance and integration effort. Section 3.5 discusses
our experience. Section 3.6 gives an overview of related work and Section 3.7
concludes this chapter.

3.2 Problem statement

In this section we elaborate on the challenge of access control for multi-tenant
applications based on two case studies of industrial SaaS providers, i.e., eDocs and

52 AMUSA: ACCESS CONTROL IN A MULTI-TENANT CONTEXT

eWorkforce. We first describe these case studies, then illustrate the challenges for
access control and conclude with the resulting requirements.

3.2.1 Industrial case studies

This work was performed in collaboration with two industrial SaaS providers in the
domains of automated document processing and workforce management, respectively
called eDocs and eWorkforce in this thesis.

eDocs. eDocs (see Figure 3.2) offers a service to its tenants to efficiently generate
and distribute large numbers of personalized documents to their respective users and
customers. Typical examples of these tenants are large companies such as banks and
press agencies, which distribute pay checks and invoices. Tenants upload the raw data
of these documents, e.g., as comma-separated values, after which eDocs generates the
actual documents and distributes these to their destinations using e-mail or a print
shop. Tenants can group and search their submitted documents and can track the
receipt of these documents. On the receiving side, recipients can also employ the
eDocs platform to read and manage all their received documents.

eWorkforce. eWorkforce (see Figure 3.3) offers a service to automatically plan
the workflows for the product and service appointments of its tenants. Typical
examples of these appointments are install and repair jobs for tenants such as large
telecom operators, utility companies and retailers. The employees of the tenants, e.g.,

eDocs

Large Bank

Press Agency

Print & Postal
Service

Press Agency
employees

Large Bank
clients

User inbox

Paper
payslips

Invoices as e-mail

@@@

Invoices

Employee
data

Digital
payslips

Figure 3.2: A high-level view of the first case study that inspired this chapter: the
eDocs service that enables tenants to efficiently generate and distribute large numbers
of digital personalized documents to their respective users and customers.

PROBLEM STATEMENT 53

Figure 3.3: A high-level view of the second case study that inspired this chapter:
the eWorkforce service that automatically plans the workflows for the product and
service appointments of its tenants.

helpdesk operators, insert new tasks into the eWorkforce application. eWorkforce then
schedules these optimally, e.g., based on location and estimated time, and assigns the
resulting appointments to the appropriate technicians of its subcontractors, which are
the companies executing the actual task. The technicians receive these appointments
using the mobile eWorkforce application and afterwards report task progress and
consumed resources, such as cables and devices. Based on this information, eDocs
reschedules appointments where needed and sends updates to the technicians.

Both eDocs and eWorkforce were actively involved in the elicitation of the
requirements for the Amusa access control middleware and assisted in its validation.
For the interested reader, the detailed description of these two case studies is available
in two technical reports [81, 82].

3.2.2 Problem illustration

Access control is an important part of security for both eDocs and eWorkforce. This
access control should provide three main functionalities:

1. In the first place, such access control should enable the provider to constrain
its tenants, e.g., make sure that only paying tenants can access the application.

2. Moreover, most SaaS applications require that the tenants cannot access each
other’s resources in the shared application (a form of tenant isolation [119]).

54 AMUSA: ACCESS CONTROL IN A MULTI-TENANT CONTEXT

3. And finally, both eDocs and eWorkforce have large companies as customers and
these companies have stringent security requirements themselves. As a result,
the tenants should be able to constrain their own users of the SaaS application.

While this functionality by itself is not trivial, it is made even more challenging by
the fact that each party wants to apply its own access rules based on its own specific
concepts:

1. In terms of provider rules, the access rules differ between eDocs and eWorkforce:
eDocs requires the credit of a tenant to be sufficient to access the application,
while eWorkforce charges tenants afterwards.

2. In terms of tenant isolation, both eDocs and eWorkforce require that tenants
are separated by default, but also require application-specific and tenant-
specific exceptions to this tenant isolation. For example, eWorkforce requires
that subcontractors are able to access the tasks assigned to their respective
subcontractors, eDocs requires that resellers of the service are able to access
the documents of their own customers and some tenants of eDocs require that
their business partners can access documents of shared projects.

3. In terms of tenant rules, the access rules also differ between tenants. For
example, for eDocs, a large bank only permits its users to read documents
belonging to their assigned customers and a press agency only permits members
of the European region to access the application. For eWorkforce, the tenants
constrain their employees based on their skills, interim contracts, projects and
internal departments. This variability challenge is related to the known problem
of tenant variability in SaaS [47, 119, 195], but is enlarged because the access
rules of a tenant depend heavily on its organizational structure and therefore
inherently vary from tenant to tenant.

In addition, when all these parties can express their access rules, these rules should
also be combined securely. For example, tenants should not be able to specify rules
that override the provider’s policies or give the tenant access to the resources of other
tenants. Finally, the appropriate rules should be dynamically bound and enforced in
the shared application at run-time with low performance overhead.

As a result of this complexity, both eDocs and eWorkforce and in extension other
SaaS providers are all faced with the challenge of setting up a complex access control
system.

THE AMUSA MIDDLEWARE 55

3.2.3 Resulting requirements

The goal of this work is to facilitate building and managing multi-tenant SaaS
applications by addressing the challenges illustrated in the previous section. More
precisely, the goal of this work is to providemiddleware for multi-tenant access control
management. This middleware should provide efficient access control management
to the SaaS providers and their tenants, should incur low performance overhead and
should be reusable by multiple SaaS providers.

As such, the functional requirements for this middleware are five-fold:

1. the middleware should separate the different tenants from each other, but also
allow for provider-specific and tenant-specific exceptions,

2. the middleware should enable the provider to constrain its tenants in terms of
application-specific concepts,

3. the middleware should enable each tenant to constrain its users in terms of its
tenant-specific concepts,

4. the middleware should combine the policies of all involved organizations
securely, and

5. the middleware should dynamically enforce the appropriate access rules for
each request in the shared application.

In addition, the middleware should adhere to the following three non-functional
requirements:

1. the middleware should require little management effort of the provider and the
tenants,

2. the middleware should introduce low performance overhead for the SaaS
application, and

3. the middleware should require little integration effort of the developers of the
application.

3.3 The Amusamiddleware

To address the requirements stated in the previous section, we present the Amusa
middleware. Amusa enables both the provider and all of its tenants to express their
access rules on the sharedmulti-tenant SaaS application, combines these rules securely

56 AMUSA: ACCESS CONTROL IN A MULTI-TENANT CONTEXT

and enforces them at run-time with low performance overhead. To allow all parties
to express their rules in terms of their own concepts, Amusa leverages the expressive
model of attribute-based access control. Moreover, in order to simplify the overall
access control management of all parties involved, Amusa provides incremental
three-layered management in which the provider builds on the attributes and policies
defined by Amusa, and the tenants build on the attributes and policies defined by the
provider. Finally, Amusa provides a low-effort development API and two configurable
performance tactics for lowering its performance overhead.

In the rest of this section, we describe (i) the access control management provided by
Amusa, i.e., how administrators use Amusa, (ii) the middleware architecture of Amusa,
i.e., how Amusa works under the hood, and (iii) the development API of Amusa, i.e.,
how developers integrate Amusa in their application code. First, we summarize the
technologies on which Amusa builds.

Key scenario. For the rest of this chapter, we focus on an illustrative scenario of
the eDocs case study employing two tenants: Large Bank and Press Agency. In
this scenario, eDocs requires the credit of a tenant to be sufficient to access the
application and also relaxes the default tenant isolation policy to permit resellers of
its application to view the documents of their respective tenants. In addition, Large
Bank only permits its users to read documents belonging to their assigned customers
and Press Agency only permits members of the European region to access the SaaS
application. Moreover, Large Bank relaxes the tenant isolation policy to permit its
business partners to access the documents of shared projects.

3.3.1 Enabling technologies

To achieve the requirements of the previous section, Amusa builds on three state-
of-the-art access control technologies that each support part of these requirements,
i.e. policy-based access control, attribute-based access control and tree-structured
policies. We already discussed these technologies in detail in the previous chapter,
here we summarize them for clarity:

Policy-based access control. Policy-based access control is an approach in which
the specification of the access rules is separated from the mechanisms that enforce
them. As such, they can be externalized from the application that they constrain and
be expressed in modular, declarative access control policies [181]. Amusa employs
policy-based access control to enable the tenant and provider to specify their own
rules without having to change the application code.

THE AMUSA MIDDLEWARE 57

Attribute-based access control. Attribute-Based Access Control (ABAC, [123]) is
a recent model to express access rules in terms of key-value properties of the subject,
the resource, the action and the environment. These properties are called attributes
and include for example the subject identifier, the subject roles, the resource type and
the time. Amusa employs ABAC because attributes provide a simple abstraction that
enables users to be managed in terms of their properties. Moreover, ABAC provides
an expressive policy model that is able to express most of the rules of our case studies
such as permissions, roles, ownership, time, separation of duty and location. However,
ABAC by itself does not provide efficient access control management, e.g., each
attribute for each subject or resource still has to be defined by the appropriate party.

Tree-structured policies. Tree-structured policies or policy trees are a means to
structure multiple rules into one well-defined policy and reason about possible
conflicts between these rules (e.g., [74, 148]). To achieve this, the rules are the leaves
of the tree and decisions of children are combined using combination algorithms such
as FirstApplicable and PermitOverrides. In addition, every element in the tree defines to
which requests it applies by means of a target. Amusa employs policy trees to combine
the policies of the tenants and the provider while guaranteeing important security
properties, e.g., making sure that tenants cannot override the provider policies.

As a result, Amusa is an access control middleware that builds on these technologies,
but adds a SaaS-specific layer that enables flexible and secure multi-tenancy. We
discuss the access control management provided by Amusa in the next section.

3.3.2 Amusa’s access control management

In this section, we describe the access control management provided by Amusa,
i.e., how administrators manage access control using Amusa. Amusa divides this
management over the three parties involved, i.e., the provider, the tenants and
the Amusa middleware itself. This three-layered management lowers the overall
management effort by means of reuse and gradual extension.

In terms of attribute-based access control, access control management consists of
managing the attributes of the subjects and the resources as well as managing the
policies that employ these attributes. In this case, Amusa divides the responsibilities
as follows: (i) Amusa predefines common attributes and policies that can be reused
across applications, providers and tenants. (ii) The provider offers the SaaS application.
Therefore he knows the application domain and manages the application resources
and actions that should be protected. This results in application-specific attributes
and policies. The provider also offers the SaaS application to tenants and therefore
also manages the policies that constrain them. (iii) The tenants manage their own

58 AMUSA: ACCESS CONTROL IN A MULTI-TENANT CONTEXT

users based on organization-specific attributes and policies. Each of the latter parties
builds on the previous layer.

In the rest of this section, we describe the three-layered attribute management and
three-layered policy management in more detail.

Three-layered attribute management

Managing attributes entails two kinds of actions: (i) defining possible attributes for
subjects and resources and (ii) assigning values to these attributes for these subjects
and resources.

Defining attributes. With regard to defining attributes, Amusa itself pre-defines
a fixed set of attributes, which the provider can extend for its own application and
which the tenants in turn can extend for their organization. More precisely, the
responsibilities are divided as follows:

Amusa. Amusa pre-defines the attributes that it requires for its correct functioning
as well as a number of frequently-occurring attributes. The former include the subject
and resource identifiers and the associated tenant of a subject or resource, the latter
include the owner of a resource and the roles of a subject (albeit in a simplified form
compared to concepts defined in the RBAC standard [100], see Appendix A).

Provider. The provider defines the attributes of the resources in its application and
optionally some frequently-used application-specific subject attributes that can be
used by all tenants. For example, in eDocs, each document has a sender and a
destination, each user has an e-mail address and each tenant has a credit.

Tenants. The tenants define their tenant-specific subject attributes. For example,
Large Bank defines attributes for departments, teams and projects, and Press Agency
also for geographic regions.

To achieve this functionality, Amusa provides user interfaces to the administrators of
the provider and each tenant. More specifically, Amusa requires every attribute to
have a name, a type (e.g., a string or a number) and a multiplicity (i.e., single-valued
or multi-valued). In addition, Amusa allows to specify whether Amusa should pull an
attribute from its database during policy evaluation or whether it can be cached in
the user’s session (see Section 3.3.3).

The attribute definitions (only their names) for the key scenario are illustrated in
Figure 3.4.

THE AMUSA MIDDLEWARE 59

Figure 3.4: Amusa enables attributes to be incrementally defined in three layers:
Amusa, the provider and the tenants (illustrated for the key scenario).

Assigning attribute values. After defining the appropriate attributes, each stake-
holder is responsible for specifying their values for the resources and subjects that it
controls:

Amusa. Amusa automatically assigns attribute values where possible. For example,
Amusa automatically assigns the identifier and the tenant of every new subject that
it creates.

Provider. The provider assigns the appropriate attribute values to its resources. In
essence, these values are already present in the SaaS application itself. For example,
the application assigns the sender and destination of a document at the moment that
it is sent. As such, these attributes are determined by the application code itself and
they should be made available to the access control system as attributes (see later on).

Tenants. The tenants assign the subject attributes defined by Amusa, the provider or
itself to their own subjects. For example, all tenants of eDocs have to specify the roles
(defined by Amusa) and e-mail address (assigned by eDocs) of their users. In addition,
Large Bank specifies the assigned customers of each of its subjects and Press Agency
the region of each of its subjects.

There are multiple ways to assign values to attributes. As mentioned above, the
values of the resource attributes are most likely determined by the application code.
For the subject attributes however, the tenants should still explicitly provide these
values. As the most straightforward approach to achieve this, Amusa provides a
user interface for the administrators of the tenants to manually assign values to the
attributes of their subjects. As an alternative approach, Amusa can also connect to
previously-existing sources of subject data such as directories managed by other user
management software.

60 AMUSA: ACCESS CONTROL IN A MULTI-TENANT CONTEXT

Three-layered policy management

The same three-layered model described for attribute management also applies to
policy management. In general, the policies of each layer can be specified in terms of
attributes that are available in that layer. More specifically, the responsibilities are
divided over the three parties as follows:

Amusa. Amusa itself has some policies built-in that apply to the provider and all
tenants. The most important of these is the default tenant isolation policy. These
policies can only reason about the attributes pre-defined by Amusa.

Provider. The provider can specify policies about the tenants as a whole. These
policies can employ the attributes specified by Amusa and by the provider itself. For
example, eDocs specifies that users belonging to a certain tenant cannot send any
document if the credit of that tenant is not sufficient.

Tenants. The tenants can specify policies that apply to their own users. These policies
can employ the attributes specified by Amusa, by the provider and by the tenant itself.
For example, Press Agency only permits subjects of the European region to access
the application.

In addition to these policies, the provider and the tenants can also specify selective
exceptions to tenant isolation. For example, this enables eDocs to permit resellers
to access the documents of their customers and Large Bank to permit its business
partners to access documents of shared projects.

In order to achieve all of this functionality, Amusa provides user interfaces to the
administrators of the provider and the tenants. These interfaces allow these users
to specify their access rules, currently in the format of XACML or STAPL (see

Figure 3.5: Next to attributes, Amusa also enables policies to be incrementally defined
in three layers: Amusa, the provider and the tenants (illustrated for the key scenario).

THE AMUSA MIDDLEWARE 61

Section 2.3.1). Each of these users can only view and alter their own access rules, after
which these are securely combined by Amusa into a single policy tree (see below).

The resulting policy definitions for the key scenario are illustrated in Figure 3.5. The
policies for constraining tenants and users are combined using logical “and” so that
the provider and tenants can incrementally restrict access. The isolation exceptions
on the other hand are combined using logical “or” so that the provider and the tenants
can incrementally expand access.

Securely combining the policies

Amusa is responsible for combining the policies of all stakeholders in such a way
that they are enforced correctly. This means that even though all stakeholders can
customize Amusa by defining their own policies, Amusa must still guarantee certain
security properties. Most importantly, tenants should not be able to leverage their
own policies to override tenant isolation or the rules of the provider.

In order to achieve these properties, Amusa combines the rules of all parties using
the policy tree shown in Figure 3.6. The leafs of this tree represent rules that return
Permit or Deny on a certain condition. The intermediate nodes combine the effects
of their children using a combination algorithm and specify to which requests they
apply using a target. When the provider or a tenant adds or modifies a policy, Amusa
constructs this policy tree as follows:

1. Build the sub-tree for tenant isolation:
- Create a policy with target “any” and combination algorithm PermitOverrides.
- Add the default rule for strict tenant isolation.
- Add the provider exceptions to tenant isolation.
- For each tenant, add its isolation exceptions wrapped in a policy with target
“resource.owner == <tenant_id>”.

2. Build the complete policy-tree:
- Create a policy with target “any” and combination algorithm DenyOverrides.
- Add the sub-tree for tenant isolation.
- Add the provider policies about tenants.
- For each tenant, add its policies about its own users, wrapped in a policy with
target “subject.tenant == <tenant_id>” and the combination algorithm chosen
by the tenant.

This policy tree ensures that the overall access decision is correct because of the
employed policy combination algorithms. Firstly, the sub-tree for tenant isolation,
the policies of the provider about tenants and the policies of each tenant about their
users are combined using DenyOverrides. As such, a request is only permitted if both

62 AMUSA: ACCESS CONTROL IN A MULTI-TENANT CONTEXT

Figure 3.6: The policy tree that securely combines the policies of all stakeholders,
illustrated for the key scenario. subj is subject, res is resource.

THE AMUSA MIDDLEWARE 63

tenant isolation, the provider and the tenant permit it. On the other hand, the default
tenant isolation rule and the exceptions of the provider and the tenants are combined
using PermitOverrides. As such, a request is permitted if one exception permits it (and
if the other top-level policies permit it). Additionally, the policies of each tenant are
inserted in the tree below a target that only applies to the subjects or resources of
that tenant and cannot be modified by the tenants. As such, only the policies of the
appropriate tenant apply to the employees of that tenant. The security evaluation
of Section 3.4.1 validates and illustrates the security properties that follow from this
policy tree.

Notice that every element in the policy tree of Figure 3.6 is defined by exactly
one stakeholder. This illustrates that three-layered access control management can
effectively segregate the different stakeholders.

3.3.3 The middleware architecture of Amusa

Following the management provided by Amusa, this section describes the underlying
architecture of the Amusa middleware that supports this management. We first
discuss the logical decomposition of this architecture, then describe the two
configurable performance tactics supported by this architecture, followed by one
possible deployment and the resulting control flows for configuration, authentication
and authorization.

Decomposition

Figure 3.7 illustrates the decomposition of the architecture in terms of the reference
architecture for policy-based access control systems. Section 2.3.2 explains this
reference architecture in-depth, but to summarize for Amusa, the Policy Decision
Point (PDP) takes the actual access decision by evaluating the access control policies
while the Policy Enforcement Point (PEP) is integrated with the application code (e.g.,
as an API) and contacts a PDP for an access decision. The Policy Information Points
(PIPs) host the attributes of the subjects and the resources. The PIPs are depicted
more specifically as databases in Figure 3.7.

As Figure 3.7 illustrates, Amusa provides user interfaces to three types of actors:
(i) The application end-users of the tenants and the provider, who use the application
that employs the Amusa middleware and who communicate with Amusa itself for
authentication. (ii) The administrators of the provider, who employ an administration
dashboard to manage their tenants and policies. (iii) The administrators of the tenants,
who employ an administration dashboard to manage their users and policies.

64 AMUSA: ACCESS CONTROL IN A MULTI-TENANT CONTEXT

Figure 3.7: The decomposition of the architecture of the Amusa middleware. The
policy decision point is the component that evaluates the policies and returns an
access decision. AuthN is authentication, PEP is Policy Enforcement Point and PDP
is Policy Decision Point.

As Figure 3.7 also illustrates, the architecture of Amusa consists of two tiers: the
application tier and the Amusa tier. These two tiers are logically decoupled because
of our goal to provide Amusa as reusable middleware.

Firstly, the application tier contains the SaaS application itself. It therefore primarily
consists of the application logic and the database that contains the application data,
i.e., the resources. Because this tier contains the application logic, it also contains the
PEP, which is integrated into the application and forms the interface to the Amusa
middleware from the point of view of the application. As a result, the application
consists of two components from the point of view of Amusa: the application logic
from which an access request is received and the database containing the resource
data from which the resource attributes are retrieved.

Secondly, the Amusa tier provides the access control functionality and consists of
seven major components: the policy decision point, the authentication endpoint, the
provider administrator dashboard, the tenant administrator dashboard, the database
containing attribute definitions, the database containing the policies and the database
containing the subject attributes. Of these components, the policy decision point
evaluates the access control policies and returns access decisions to the PEP. To do
so, this component can fetch subject attributes and resource attributes from their
respective databases during policy evaluation. As we will explain below, the policy

THE AMUSA MIDDLEWARE 65

decision point is further decomposed into the Application PDP and the Amusa PDP
that can be separately deployed for improved performance. Apart from the policy
decision point, the dashboards are used by the provider and tenant administrators
to define and assign attributes, and deploy policies. Whenever an administrator
makes a change to its policies, the dashboards construct the complete policy tree
and deploy it to the policy decision point. Finally, the authentication endpoint
provides a user interface for users to authenticate. The application redirects the user
to the authentication endpoint provided by Amusa using a federated authentication
technique such as SAML [2]. After successful authentication, the authentication
endpoint redirects the user back to the application with an authentication statement
and his or her subject attributes. The database containing the credentials of the
subjects is not shown in Figure 3.7 for readability reasons.

Configurable performance tactics

Amusa applies two major performance tactics to minimize its run-time performance
overhead: (i) pushing or pulling subject attributes and (ii) the flexible deployment of
policies across a multi-tier PDP. For these tactics, it is important to notice that their
effect depends on the exact policies and attributes in use. Therefore, Amusa allows
both tactics to be configured per SaaS application and per tenant. The performance
evaluation in Section 3.4.2 evaluates the impact of each of these tactics.

Pushing or pulling subject attributes. As a first major configurable performance
tactic, Amusa allows to configure for each type of subject attribute whether Amusa
should pull this attribute from its respective database during policy evaluation or
whether this attribute should be cached in the application and pushed to Amusa with
the decision request from the PEP. Pushing an attribute can benefit performance: by
caching these attributes in the application, a database request can be avoided during
policy evaluation later on. However, caching trades consistency for performance:
since the policy decision point will not fetch the latest value of a cached attribute,
policy evaluation can be based on stale data. Because access control is a security
feature, this inconsistency can lead to security holes, e.g. in case the attributes of
a removed account are cached. As such, this tactic is best suited for infrequently-
changing attributes such as the department of a subject. Therefore, Amusa allows the
domain experts, i.e. the provider and tenant admins, to configure whether a certain
subject attribute should be cached or not. Amusa will then return these attributes at
successful authentication, after which the application is expected to store them in the
user session and provide them to the PEP later on.

66 AMUSA: ACCESS CONTROL IN A MULTI-TENANT CONTEXT

Multi-tier PDP. As a second major configurable performance tactic, Amusa allows to
deploy the complete policy tree across a multi-tier policy decision point: as Figure 3.7
illustrates, the policy decision point is further decomposed into the Amusa PDP and
the Application PDP that can be deployed separately. More precisely, the Amusa PDP
is meant to be deployed close to the attribute databases, which has the performance
advantage of fetching required attributes locally. The Application PDP on the other
hand is meant to be deployed close to the application logic such that it can be contacted
from the application without network communication. The latter is especially useful
for evaluating parts of the policies that only require attributes that can be pushed
with the decision request, which applies for example to the default tenant isolation
policy, most provider policies, as well as other policies that are high in the policy tree.
For this performance tactic, Amusa allows domain experts to manually configure
which part of the complete policy tree of Figure 3.6 should be evaluated where.

Deployment

The components of the decomposition of the Amusa architecture can be deployed in
multiple ways. One possible and realistic deployment is shown in Figure 3.8. In this
deployment, the application tier and the Amusa tier are also physically decoupled in
order to allow both to be scaled out independently. More precisely, the application
logic is deployed and replicated on multiple physical nodes in order to support the
large amounts of requests per second that most SaaS applications are aimed for. As a
result, each resulting application node also contains a PEP and each of these nodes
connects to the central Amusa PDP. In Figure 3.8, this PDP is deployed on a dedicated
node to achieve low-latency responses to access requests. Should this single node
not be able to achieve the required throughput, the Amusa PDP can be scaled out
securely using the techniques discussed in Chapter 6.

In addition to the two tiers, the deployment of Figure 3.8 also deploys the Application
PDP and Amusa PDP for optimal performance. More precisely, the Amusa PDP is
deployed on the same node as the database containing the subject attributes. This
offers the performance advantage of fetching subject attributes locally during policy
evaluation. The Application PDP on the other hand is deployed on each application
node, i.e., close to the application logic. This in turn avoids network overhead in case
the policy evaluation does not require any attributes apart from the ones given by
the application, e.g. when evaluating the default tenant isolation policy.

Notice that we also deployed the database of application resources separately from
the PDPs. This is a realistic assumption because Amusa is meant to be decoupled
from the application as much as possible, but this also means that the Amusa PDP
possibly still has to fetch some attributes from a remote node because of the physical
separation between both tiers. However, the policies in our case studies show that

THE AMUSA MIDDLEWARE 67

Figure 3.8: A possible and realistic deployment of the Amusa architecture illustrated
in Figure 3.7. AuthN is authentication, PEP is Policy Enforcement Point and PDP is
Policy Decision Point.

most resource attributes can be given with the decision request from the application,
which often already has loaded the resources.

Resulting control flows

Finally, we here discuss the configuration, authentication and authorization flows
that result from the architecture discussed before.

Configuration flow. The administrators of the provider and the tenants employ
the administrator dashboards in order to define attributes, assign values to subject
attributes and specify policies.
Firstly, when an administrator defines a new attribute, this definition is stored in
the database of attribute definitions. Afterwards, these attributes can be employed
in the access control policies and the appropriate parties can assign values to these
attributes for their subjects.
Secondly, when an administrator updates the value of a subject attribute, this
value is stored in the database of subject attributes provided by Amusa. The
cache of subject attributes in the application is not explicitly updated because these
attributes are expected not to be sensitive to inconsistencies as configured by the

68 AMUSA: ACCESS CONTROL IN A MULTI-TENANT CONTEXT

Figure 3.9: The configuration flow when a tenant administrator updates a policy
resulting from the deployment of Figure 3.8.

administrator. Notice that it is not possible to specify values for resource attributes in
the administrator dashboard. For these attributes, the developers of the provider have
to implement attribute handlers to enable the Amusa PDP to fetch newly defined
resource attributes from the application database during policy evaluation. This is
discussed in the next section.
Finally, Figure 3.9 illustrates the configuration flow for updating a tenant policy. When
a tenant administrator updates (a part of) its policy (step 1), the dashboard first stores
the updated policy in the policy database (step 2). It then constructs the complete
policy tree as explained in Section 3.3.2 (step 3) and deploys this tree across the Amusa
PDP (step 4) and Application PDPs (step 5) as configured by the provider administrator.
The configuration flow when a provider administrator updates a provider policy is
similar.

Authentication flow. Figure 3.10 illustrates the authentication flow resulting from
the deployment of Figure 3.8. When an unauthenticated user makes a request to
the SaaS application (step 1), the application redirects this user to the authentication
endpoint provided by Amusa using a federated authentication technique such as
SAML [2] (step 2). This endpoint then authenticates the user (steps 3 and 4), e.g., based
on the combination of a username and password. After successful authentication, the
authentication endpoint fetches which attributes of this subject are configured to be
cached in the application from the database of attribute definitions (steps 5 and 6),

THE AMUSA MIDDLEWARE 69

Figure 3.10: The authentication flow resulting from the deployment of Figure 3.8.

fetches the values of these attributes from the database of subject attributes (steps 7
and 8) and redirects the user back to the application with an authentication statement
as well as these attributes (step 9). The application then stores these attributes in the
session of this user (step 10) and should make these available to the PEP in order to
include them in decision requests later on. After having authenticated the user, the
application has to authorize the requested action, which is described next.

Authorization flow. Figure 3.11 illustrates the authorization flow resulting from
the deployment of Figure 3.8. Before this flow starts, the attribute definitions and
policies have been loaded into the Amusa PDP and Application PDPs as described
before. When an authenticated user then makes a request to the application (step 1),
the application (or more precisely, the PEP) sends an authorization request consisting
of attributes to the local Application PDP (step 2). This request always contains the
identifier of the subject and the resource for which an access decision is required and
additionally contains attributes such as already-fetched data about the resource and
attributes of the subject cached in the user session in the application. The Application
PDP then evaluates its part of the policy tree based on this data (step 3) and contacts
the Amusa PDP if its own policies do not lead to a decision (step 4). The Amusa PDP
then evaluates its part of the policy tree (step 5), there fetching subject and resource
attributes from their respective databases (steps 5a and 5b). Eventually, the Amusa
PDP returns its access decision to the Application PDP that requested it (step 6). This
Application PDP combines this decision with the rest of the policy tree and returns
the final decision to the local PEP (step 7). If permitted, the application then returns
the result to the user (step 8).

70 AMUSA: ACCESS CONTROL IN A MULTI-TENANT CONTEXT

Figure 3.11: The authorization flow resulting from the deployment of Figure 3.8.

Note that in essence, the PDPs evaluate the complete policy tree containing all policies
of all stakeholders for every request. However, because of the structure of the complete
policy tree (see Figure 3.6), only the appropriate policies apply and are effectively
evaluated. As such, this set-up effectively binds the correct policies at run-time, which
was one of the explicit requirements for supporting multi-tenant access control.

3.3.4 How to integrate Amusa in an application

Finally, we discuss how developers of a SaaS application can integrate Amusa in
the code of this application. While provider administrators can define attributes
and policies without writing any code, the developers of the provider should still
(i) instrument the application code for authentication, (ii) instrument the application
code for authorization, i.e. to request access decisions from Amusa and enforce them,
and (iii) optionally extend Amusa with attribute handlers for the resource attributes
in the application database. Amusa provides a development API for each of these
operations.

In this section, we discuss these development APIs. Because we do not regard
authentication as a contribution of this work, we focus on the latter two points.
Clearly, the effort to perform these modifications should be as low as possible because
the goal of Amusa is to facilitate building andmanagingmulti-tenant SaaS applications.
Therefore, these APIs are designed to require low integration effort of the provider.
In Section 3.4.3, we evaluate this integration effort.

THE AMUSA MIDDLEWARE 71

Authorization API

In terms of authorization, the application should request an authorization decision
from Amusa for every action supported by the application. Therefore, the impact of
authorization on the application code can be expected to grow with the size of the
application. To minimize this impact, the Amusa API is designed to be as concise and
easy-to-use as possible.

Listing 3.1 provides an example usage of the basic authorization API. This API closely
aligns to the choice for attribute-based access control: the application asks Amusa
whether a certain subject is permitted to perform a certain action on certain resource in
a certain environment and each of these entities is represented in terms of its attributes.
The request should at least contain the identifiers of the subject, the resource and the
action in order to fetch other attributes assigned to them, but can also push other
attributes for improved performance. The whole policy evaluation process is then
handled by Amusa, which returns its decision. This decision is represented as a simple
boolean for now, but can be extended towards the future, e.g. with application-level
obligations such as requiring the user to agree to terms and conditions.

The basic API of Listing 3.1 can often be further simplified using technology-specific
methods. For example, the Java Spring application framework provides functionality

/ / an a p p l i c a t i o n method
public Document viewDoc (Document doc , H t t p S e s s i on s e s s i o n) {

S u b j e c t s = s e s s i o n . g e t S u b j e c t () ;
Resource r = new Resource (doc . g e t I d ())

. a d dA t t r i b u t e (” type ” , ” document ”)

. a d dA t t r i b u t e (” t en an t ” , doc . getOwner ()) ;
Ac t ion a = new Act ion (” view ”) ;
i f (! pep . i sAu t h o r i z e d (s , r , a)) { return ; }
. . . / / a p p l i c a t i o n l o g i c

}

Listing 3.1: Example usage of the basic authorization API in Java.

@PreAuthorize (” # doc ” , ” view ”)
public Document viewDoc (Document doc , H t t p S e s s i on s e s s i o n) {

. . . / / a p p l i c a t i o n l o g i c
}

Listing 3.2: Example usage of a simplification of the basic API using Spring-like
annotations.

72 AMUSA: ACCESS CONTROL IN A MULTI-TENANT CONTEXT

to easily store data in user sessions, automatically inject these data in controller
methods and annotate these methods with simple authorization statements [18]. In
addition, frameworks such as JEE allow to insert hooks without having to alter the
application code. Finally, other authors have discussed methods to automatically
insert the calls to the PEP in code, for example based on aspect weaving [201] or
based on automated source code analysis [166]. All of these approaches can be used
to further lower the instrumentation effort. An example of the resulting simplified
API in the case of Spring is shown in Listing 3.2.

Attribute handlers

As opposed to the subject attributes, the resource attributes are stored outside of
Amusa, i.e. in the application databases. Therefore, if the provider wants to allow the
Amusa PDP to fetch these attributes during policy evaluation, the provider should
implement the appropriate attribute handlers that query these databases and return
the resource data in the form of attributes.

Similar to the authorization API, the attribute handlers are designed for simplicity.
As shown by Listing 3.3, each attribute handler supports fetching one or multiple
attributes as identified by their type, their attribute identifier and the identifier of the
resource. By using this simple interface, Amusa can easily be integrated with the
application-specific resource databases. In the simplest case, an attribute represents a
simple property, e.g. the type of a resource, but in essence, an attribute is an access
control abstraction that can also represent a complex database query, e.g. the members
of the project to which the resource belongs to.

in te r face At t r i b u t eHand l e r {
public boolean s uppo r t s (At t rType t , S t r i n g a t t r I d) ;

public A t t r i b u t eV a l u e ge tVa lue (At t rType t , S t r i n g a t t r I d ,
S t r i n g r e s o u r c e I d) ;

}

Listing 3.3: The interface of an attribute handler to be implemented by the provider.

3.4 Evaluation

The previous section presented the concept of three-layered access control manage-
ment for SaaS and the supporting Amusa middleware. Section 3.3.2 already illustrated
that this three-layered approach can effectively segregate the different roles in SaaS

EVALUATION 73

access control management. This section further evaluates Amusa in terms of (i) its
security properties, (ii) its performance impact and (iii) its integration effort.

3.4.1 Security

Section 3.3.2 described the policy tree employed by Amusa to securely combine
the policies of all the involved parties. In this section, we validate that this policy
tree indeed keeps the complete policy secure. First we deduct a number of security
properties guaranteed by the policy tree, then we illustrate how these properties
mitigate certain misuse cases.

Security properties. In essence, the policy tree guarantees the following security
properties:

1. If the provider denies a request, a tenant can never override this. The policy tree
achieves this by combining the policies of all stakeholders using the DenyOverrides
combination algorithm. As a result, a Deny of the provider policies can never by
overridden by a tenant policy.

2. Tenants can only enforce policies on their own users. The policy tree achieves this
by inserting the policies of a certain tenant below a target that only applies to its own
subjects.

3. Only the policies of the appropriate tenant are taken into account for a certain request.
The policy tree achieves this as a result of the previous guarantee, combined with the
guarantees of Amusa that all tenant identifiers are unique, that the tenant is correctly
assigned to subjects and that the assigned tenant cannot be changed by any subject.

4. Tenants and provider can override the default tenant isolation policy. The policy
tree achieves this by combining the default tenant isolation policy with the isolation
exceptions of the provider and the tenants using PermitOverrides. As such, the provider
and its tenants can all override a Deny of the default isolation policy.

5. Tenants can override tenant isolation only to permit others to view its application
resources. The policy tree achieves this by inserting the isolation exceptions of a
certain tenant below a target that only applies to its own resources.

6. Tenants cannot gain access to the resources of other tenants using their own policies.
The policy tree achieves this as a result of the previous security guarantees. More
precisely, if a user of a tenant A tries to access a resource belonging to tenant B,

74 AMUSA: ACCESS CONTROL IN A MULTI-TENANT CONTEXT

the constraining policies of tenant A and the isolation exceptions of tenant B apply,
respectively because of the subject and the resource of the request. However, unless
the isolation exceptions of tenant B permit the request, the Deny of the default
isolation policy will always overrule a possible Permit of tenant A.

Note that some of these guarantees also depend on the correctness of certain
attributes. For example, it should not be possible for a user to change the attribute
subj.tenant_credit. To guarantee this to the provider, the supporting middleware can
enforce that certain attributes cannot be defined or assigned by tenants.

Illustration. To show that these properties keep the complete policy secure, take
the following three examples:

Example 1. Imagine that Large Bank tries to gain access to the resources of Press
Agency by configuring the following rule R1: Permit if subject.tenant == “Large Bank”
and resource.owner == “Press Agency”. This is handled by Guarantee 6, keeping the
resources of Press Agency secure.

Example 2. Imagine that Large Bank tries to perform more actions than its credit
permits by configuring the following rule R2: Permit if subject.tenant_credit == 0.
This is handled by Guarantee 1, which gives preference to the Deny of the provider
policies.

Example 3. Imagine that Large Bank tries to deny the use of the application to Press
Agency by configuring the following rule R3: Deny if subject.tenant == “Press Agency”.
This is handled by Guarantee 2, i.e. R3 will never apply to the users of Press Agency.

3.4.2 Performance

Next to the security properties of Amusa, we also evaluated its performance overhead
on a request of a user to the application. More precisely, we evaluated (1) the behavior
of Amusa with regard to a growing number of tenants, (2) the performance gain of
the configurable performance tactics and (3) the overall resulting overhead of Amusa.

Set-up

To evaluate the performance overhead of Amusa, we developed a prototype of both
the Amusa middleware as well as the eDocs application running on top of this
middleware. Both prototypes are written in Java and employ the Spring 3 Web
MVC framework for the front-ends. The Amusa prototype employs SAML [2] for

EVALUATION 75

authentication, XACML2 [165] for policy specification and an extended version of the
SunXACML engine for policy evaluation. The application prototype allows users to
send documents to each other, as well as reading and managing these documents. A
demo of Amusa, the code of both prototypes and the employed policies are available
on-line1.

The tests deploy the architecture of Figure 3.7 on three nodes, respectively hosting
(1) the application logic and resource database, (2) the Amusa PDP and the Amusa
attribute database, and (3) the client making the requests to the application. The
Application PDP is compiled into the application for optimal performance. Each test
was repeated until the confidence interval of the average policy evaluation time was
situated within 2% of the sampled mean for a confidence level of 95%. We excluded
the top 1% of the results because some of these were up to 100 times larger than the
mean, presumably because of running the tests on a shared cloud platform.

The tests employ the policies of the eDocs application and its Large Bank tenant.
Measuring the performance overhead of access control is not trivial because this
overhead largely depends on the size and structure of the involved policy. In this
regard, we opted for measuring the performance of a set of realistic policies instead of
a set of artificial policies. The employed policy contains 32 rules, has a tree depth of 4,
requires 26 different attributes and comprises 1119 lines of XACML in total. Because
reaching an access decision often does not require to evaluate the complete policy, we
report the results for 8 representative authorization requests that cover the complete
policy. These requests trigger the tenant isolation policy, the provider policies and
the different rules of Large Bank. Table 3.1 provides the most important properties
these 8 representative requests.

Impact of a growing number of tenants

With regard to a growing number of tenants, the only aspect of Amusa that grows
with the number of tenants is the size of the complete policy tree. More precisely,
each new tenant adds a branch to the policy tree of which the applicability will be
checked during each policy evaluation. eDocs and eWorkforce both have around 50
tenants. For this size, testing the applicability of all tenant policies in XACML imposes
a mean performance overhead of less than 0.15ms. This overhead is negligible as
compared to the overall performance overhead, but grows linearly with the number
of tenants. As such, it can become beneficial for larger SaaS applications to introduce
a specialized policy primitive for more efficient matching of the tenant policies, e.g., a
hash-map based on the tenant identifier.

1https://distrinet.cs.kuleuven.be/software/amusa/

76 AMUSA: ACCESS CONTROL IN A MULTI-TENANT CONTEXT

Request: 1 2 3 4 5 6 7 8

#Tree nodes 10 9 23 23 32 22 28 33

↪→#Rules 1 1 6 7 5 9 11 5

#Attributes 6 5 28 16 28 24 27 31

↪→ #Unique 5 4 9 9 10 11 10 9

↪→ #Resource 2 1 3 5 4 3 4 4

↪→ #Subject 3 3 6 4 6 7 5 5

↪→#Pushed 3 2 5 3 4 4 3 4

Table 3.1: Description of the test set-up: run-time properties of 8 representative
requests for the employed policy, i.e. the number of nodes evaluated in the policy
tree (can result into NotApplicable), the number of evaluated rules (leafs of the policy
tree) and the number of attributes required to reach a decision. This total number
of required attributes to reach a decision is further decomposed into the number of
different required attributes (because the second request for the same attribute will
be solved from the cache), the number of different resource attributes, the number of
different subject attributes and the number of these that are pushed. These numbers
do not take into account identifiers of the subject, the resource or the action.

Impact of the performance tactics

To measure the impact of the performance tactics, we differentiate between 6 distinct
cases based on the possible combinations of the configurable performance tactics.
There are two possible configurations for attribute fetching: pushing or pulling certain
attributes. There are three possible configurations for evaluating the policy: on the
Application PDP, on the Amusa PDP or distributed over both PDPs, i.e., the multi-tier
PDP. Notice that for this performance evaluation, the Application PDP can fetch
attributes from the attribute databases, which was not shown in the architecture
description.

For pushing attributes, we evaluate the impact of pushing the subject attributes that
allow this and storing these in the user’s session (see Table 3.1). The resource attributes
are always given by the application. For the split evaluation, we opted for evaluating
the provider policies at the Application PDP and the tenant policies at the Amusa
PDP. The latter can be expected to require more subject attributes.

Results. Figure 3.12 shows the results of our performance evaluation. In order to
provide insights in the behavior of the complete policy tree, we list the results for

EVALUATION 77

each individual request of Table 3.1. We can make several interesting observations
from these results.

Firstly, the Application PDP that does not employ any pushed attributes (Figure 3.12a)
represents the basic behavior. In this case, the largest portion of the policy evaluation
time is spent on attribute fetch. This is a result of the large number of required
database fetches, which each entail remote communication (an attribute fetch from
the Application PDP required 1.2ms on average). This effect is the largest for R6,
which requires 7 attribute fetches.

Secondly, the difference between the left column and the right column of Figure 3.12
shows the impact of attribute pushing: every attribute fetch that is avoided saves
1.2ms on average. This effect is most clear for R1, where all attributes can be pushed.
R6 still requires 3 attributes to be fetched from the database.

Thirdly, the difference between the first row and the second row of Figure 3.12
shows the performance difference between the Amusa PDP and the Application PDP.
The total overhead of attribute fetch is reduced by a linear factor of 2, because the
Amusa PDP can fetch attributes from the local database. An attribute fetch from the
Amusa PDP required 0.6ms on average. However, evaluating a policy at the Amusa
PDP requires network communication, which introduces a fairly constant overhead
of 1.25ms. This shows that the net impact of moving policy evaluation from the
Application PDP to the Amusa PDP depends on the characteristics of the request
and the policy, i.e. whether the number of database attribute fetches justifies the
introduced network overhead. Figure 3.12 also shows that pushing attributes also
has a positive impact on the Amusa PDP, but that this impact is lower because of the
lower latency of an attribute fetch.

Fourthly, the combination of the Application PDP and the Amusa PDP provides the
middle ground between both. This is illustrated in the third row of Figure 3.12. For
R1 and R2, the combination behaves as intended. Indeed, the part of the policy on the
Application PDP does not require communication with the Amusa PDP for reaching
a decision, resulting in the performance of only using the Application PDP. However,
for the other requests, the results are worse because of the attribute fetches from the
Application PDP and the communication with the Amusa PDP. Again, this illustrates
the case-specific trade-off between attribute fetch and communication overhead. The
choice of splitting the provider and tenant policies was clearly not optimal. Our
technique of policy federation (see Chapter 5) can be used to automatically optimize
this decomposition.

Summary. The results of Figure 3.12 show that both performance tactics can have
a positive effect on the policy evaluation time, but that the overall configuration of all
tenants and the provider determines the final performance. However, considering

78 AMUSA: ACCESS CONTROL IN A MULTI-TENANT CONTEXT

R1 R2 R3 R4 R5 R6 R7 R8
Request

0

2

4

6

8

10

P
o
lic

y
 e

v
a
lu

a
ti

o
n
 t

im
e
 (

m
s)

1.2ms 1.0ms 1.2ms 1.1ms 1.2ms 1.2ms 1.2ms 1.1ms

5.0ms 5.0ms

7.1ms
5.8ms

6.8ms
7.8ms

6.8ms
5.7ms

6.3ms
(10%)

6.0ms
(10%)

8.3ms
(15%)

6.9ms
(13%)

8.0ms
(14%)

9.0ms
(15%) 7.9ms

(14%)
6.7ms
(11%)

Processing Attribute fetch

(a) Application PDP only,
pulling subject attributes.

R1 R2 R3 R4 R5 R6 R7 R8
Request

0

1

2

3

4

5

6

P
o
lic

y
 e

v
a
lu

a
ti

o
n
 t

im
e
 (

m
s)

0.6ms 0.7ms 1.0ms 0.8ms 0.9ms 0.9ms 0.9ms 0.8ms

1.5ms

2.7ms

1.4ms

2.6ms
3.6ms

2.5ms

1.3ms0.6ms
(1%)

2.2ms
(4%)

3.7ms
(7%)

2.2ms
(4%)

3.5ms
(6%)

4.5ms
(8%)

3.4ms
(6%)

2.1ms
(4%)

Processing Attribute fetch

(b) Application PDP only,
pushing subject attributes.

R1 R2 R3 R4 R5 R6 R7 R8
Request

0

1

2

3

4

5

6

P
o
lic

y
 e

v
a
lu

a
ti

o
n
 t

im
e
 (

m
s)

1.5ms 1.1ms 1.2ms 1.0ms 1.0ms 1.0ms 1.0ms 1.0ms

2.7ms

2.0ms
2.5ms

1.9ms 2.1ms 2.5ms 2.2ms 1.9ms

4.2ms
(7%)

3.1ms
(5%)

3.7ms
(8%)

2.9ms
(6%)

3.2ms
(7%)

3.5ms
(7%) 3.2ms

(6%) 2.9ms
(5%)

Processing Attribute fetch

(c) Amusa PDP only,
pulling subject attributes.

R1 R2 R3 R4 R5 R6 R7 R8
Request

0

1

2

3

4

5

6

P
o
lic

y
 e

v
a
lu

a
ti

o
n
 t

im
e
 (

m
s)

1.1ms 1.0ms 1.2ms 1.0ms 1.0ms 1.0ms 0.9ms 0.9ms

0.9ms
1.4ms

0.7ms
1.2ms 1.5ms

1.1ms
0.6ms

1.1ms
(2%)

1.9ms
(4%)

2.5ms
(5%)

1.7ms
(4%)

2.2ms
(4%)

2.5ms
(5%) 2.0ms

(4%) 1.5ms
(3%)

Processing Attribute fetch

(d) Amusa PDP only,
pushing subject attributes.

R1 R2 R3 R4 R5 R6 R7 R8
Request

0

1

2

3

4

5

6

7

8

9

P
o
lic

y
 e

v
a
lu

a
ti

o
n
 t

im
e
 (

m
s)

0.9ms 0.7ms
1.9ms 1.7ms 1.7ms 1.6ms 1.6ms 1.5ms

4.8ms 4.6ms

6.8ms

5.6ms 6.2ms
7.2ms

6.4ms
5.4ms

5.7ms
(11%) 5.3ms

(11%)

8.8ms
(18%)

7.3ms
(16%)

7.9ms
(16%)

8.8ms
(17%) 8.0ms

(16%)
7.0ms
(13%)

Processing Attribute fetch

(e) Two-tiered PDP,
pulling subject attributes.

R1 R2 R3 R4 R5 R6 R7 R8
Request

0

1

2

3

4

5

6

P
o
lic

y
 e

v
a
lu

a
ti

o
n
 t

im
e
 (

m
s)

0.5ms 0.5ms

1.7ms 1.3ms 1.4ms 1.4ms 1.3ms 1.2ms

1.4ms

2.6ms

1.3ms
1.9ms

3.0ms
2.3ms

1.0ms
0.5ms
(1%)

1.9ms
(4%)

4.3ms
(10%)

2.6ms
(6%)

3.3ms
(7%)

4.4ms
(10%)

3.6ms
(8%)

2.3ms
(5%)

Processing Attribute fetch

(f) Two-tiered PDP,
pushing subject attributes.

Figure 3.12: The total policy evaluation time from the point of view of the PEP, for
every request of Table 3.1 and for each of the six combinations of the two performance
tactics of Section 3.3.3. Each graph shows the portion of the evaluation time spent on
network overhead, fetching attributes and processing the policy. Lower is better. The
percentage on top of each bar represents the fraction of the complete time to process
the application request spent on authorization. The dotted line represents the average
over all requests.

EVALUATION 79

the overall results, the average performance overhead of Amusa is low. The best
combination of tactics in the test scenario is using only the Application PDP in
the multi-tier deployment, combined with the pushing tactic. This leads to a mean
performance overhead of 2.8ms for all requests. In a broader perspective, this is 4.9%
of the server-side application request time or 1.5% of the total client-side request time.
These tests can be considered worst-case given that the operations of our application
were limited in complexity with respect to practical applications. Even in this context,
our performance results can be considered low. Moreover, this overhead can still be
lowered using other performance tactics, e.g. high-performant policy engines such
as [152], which were not the focus of this work.

3.4.3 Integration effort

Finally, we evaluate how much effort it takes for the provider to integrate the Amusa
middleware in its SaaS application. Because Amusa is designed to be a reusable
middleware, this effort should be low.

As explained in Section 3.3.4, the integration of Amusa in a SaaS application entails
three additions to the application: (1) instrumenting the application to employ
Amusa for authentication, (2) instrumenting the application to employ Amusa for
authorization and (3) extending Amusa to allow it to fetch resource attributes from
the application database. Again, we focus on the latter points since we do not regard
authentication as a contribution of Amusa and because authentication required only
a limited and fixed amount of localized code in the application.

Authorization. The application should request an authorization decision from
Amusa for every action supported by the application. Therefore, the amount of
authorization code in the application can be expected to grow with the application. In
the application prototype, authorization was required on 4 application-level methods:
creating a document, rendering the view for creating a document, viewing a document
and deleting a document. The four resulting access checks only required changes to the
MVC controller and required 57 lines of code (6.3% of the complete application code).
This limited and localized code illustrates a low instrumentation effort. Moreover,
this prototype deliberately evaluated the worst case by employing the basic API of
Listing 3.1. As such, the instrumentation effort can further be lowered using more
extensive technology-specific simplifications.

Attributehandlers. Attribute handlers are required to enable Amusa to dynamically
fetch resource attributes from the application database during policy evaluation.
However, the policies of the eDocs case study did not require any attribute handlers,

80 AMUSA: ACCESS CONTROL IN A MULTI-TENANT CONTEXT

i.e. it was possible to push all resource attributes in the decision request from the
application. Because these policies were deducted from a realistic case study, this
illustrates that attribute handlers are only required for the more complex applications
and policies. Moreover, because of the simple interface to which attribute handlers
should comply (see Section 3.3.4), they can be expected to require only a low
development effort.

3.5 Discussion

In this chapter, we presented the Amusa access control middleware for multi-tenant
SaaS applications. Amusa enables both the provider and the tenants of a SaaS
application to effectively specify their access rules. combines these rules securely and
enforces them at run-time. In addition, Amusa requires low development effort of the
developers of the SaaS application and introduces a low and configurable performance
overhead based on two major performance tactics.

For designing Amusa we have deliberately built on the state-of-the-art technologies of
policy-based access control with attribute-based tree-structured policies. As a result,
the main contribution of Amusa is the SaaS-specific layer for flexible and secure
multi-tenancy on top of these technologies. More specifically, this work applied these
in a three-layered approach, which simplifies access control management through
gradual refinement. To the best of our knowledge, this work is the most extensive
study and application of these technologies described in literature and our experience
leads us to believe that all three technologies are important enablers for future access
control research.

Our experiences with Amusa have led to the identification of some interesting future
work. For example, one important part of this future work is further improving
performance. While the performance overhead of Amusa is low, it is still not negligible.
As our results show, processing, attribute fetch and distribution all make up a large
part of the total policy evaluation time and can serve future optimizations. While
the former two are subject of recent research (e.g. respectively [152] and [113]),
efficient distributed policy evaluation is still an open challenge, especially when
taking into account attribute updates. This challenge particularly applies to SaaS
applications that must support a large number of tenants and users and which execute
on a large-scale distributed infrastructure. Because of this, we have focused on this
problem in Chapter 6. This tactic can also be used to further improve the performance
of Amusa.

In addition, our experiences with Amusa have also led to the identification of the
current limitations of policy-based access control. Most importantly, while policy-
based access control allows the access rules for a SaaS application to be specified

RELATEDWORK 81

independently of the application code and even to be modified at run-time without
requiring the application to be stopped, our experience shows that it is currently
still challenging and cumbersome to write a correct or complete policy for a certain
application.

The most fundamental reason for this is that a policy editor requires information
about the application that it wants to constrain, e.g., which types of resources that are
present, which actions these support and which attributes these provide. However,
in current technologies, this information can only be communicated by means of
documentation. As a result, there is currently no way to verify whether a policy
covers all actions on all types of resources of the application and a simple typo can
lead to an incorrect attribute statement in a policy.

A second cause for the challenge of writing policies are the current policy languages.
More precisely, Amusa builds on XACML, which is widely used in literature and is
reported to be used in practice as well. However, our experience shows that it is hard
for non-expert users to express a XACML policy because of the XML format and the
non-trivial policy trees. As explained in Section 2.3.1, there are multiple tactics to
address this challenge and we developed the more user-friendly but equally-expressive
STAPL language that we have also integrated in Amusa. Towards the future however,
more tool support is needed to enable non-expert users to express access rules.

We regard both of these challenges to be fundamental challenges for policy-based
access control. Although these challenges are not the main focus of this thesis, the
experiences of this work have led us to possible approaches to address them, which
we further discuss in Chapter 7.

3.6 Related work

The Amusa middleware builds on a large body of work from the domains of multi-
tenancy, access control and policy-based middleware.

Firstly, while SaaS is a relatively young paradigm, it has been subject of research
for quite some time. For example, in 2007, Guo et al. [119] identified two high-level
requirements: isolating tenants and allowing the SaaS application to be customized
to the specific needs of each tenant. The latter is also identified by Bezemer et
al. [47] and Sun et al. [195]. This work focuses on access control, which is both a
means to provide (application-specific) tenant isolation and an important source of
variability in SaaS. However, to the best of our knowledge, very little work has been
performed to achieve these requirements. In the state of practice, we are not aware
of solutions that provide expressive tenant-specific policy-based access control, while
our industrial partners stressed the need for such technology. Tenant isolation is

82 AMUSA: ACCESS CONTROL IN A MULTI-TENANT CONTEXT

mostly implemented manually, and builds on strict data isolation in the data store.
More specifically, a built-in tenant identifier is used in database queries. This approach
is adopted for example in GAE [14]. However, this does not allow easy application-
specific customization of the isolation policy. In the state of the art, Calero et al. [29]
also focused on multi-tenant authorization for cloud applications. They opted for
extending role-based access control (RBAC, [100]) specifically for multi-tenancy. This
work has later been formalized by Tang et al. [196]. Amusa extends this approach by
moving from RBAC to more expressive attribute-based policy trees and extending
the architecture into a reusable middleware.

Secondly, Amusa was inspired by other access control systems described in literature.
Multiple such systems have been described in the domain of grid computing, e.g.,
CAS, Cardea and PRIMA (for a good overview of this domain, we refer to [70]).
Access control in this domain focuses on scalable access control management for a
possibly large number of possibly large virtual organizations. Especially relevant for
this work is CAS [173]. CAS allows resource owners to grant access to a community
as a whole and lets the community itself manage fine-grained access control. This
approach separates these two roles in access control management similarly to our
separation between the provider that manages tenants as a whole and the tenants that
manage their internal organization. In addition to this approach, the access control
systems for grid computing also employ other techniques similar to the ones used
by Amusa, such as the decoupling of enforcement and policy evaluation. Amusa
combines these techniques with the recent technologies of ABAC and policy trees into
a configurable access control middleware for the domain of SaaS. Apart from access
control in grid computing, Fatema et al. [99] and Lazouski et al. [145] more recently
also described access control systems relevant to Amusa. Both complement Amusa
because they employ similar building blocks, but have a different focus, respectively
privacy in multi-organizational systems and usage control in Infrastructure as a
Service. Therefore, it would be interesting to see how these systems can be combined
with Amusa.

Thirdly, Amusa builds on the experience with policies in the domain of middleware.
For example, early work by Sloman [190] already applied policies for declaratively
managing access control in distributed systems, which later led to the definition of
the influential Ponder specification language for access control policies [79]. Next to
access control, policies have been applied for a large variety of goals in the domain
of middleware. Amongst others, Bacon et al. [36] employ policies for information
flow control in multi-domain applications, Wun and Jacobson [211] for managing
content-based publish/subscribe middleware and Kumar et al. [140] for describing
self-management behavior. Moreover, policies also have a long history of being used
for network management [121]. The common denominator of all this work is that
policies are used to separate semantics from enforcement and describe the semantics
declaratively. Amusa applied this principle to the domain of SaaS access control.

CONCLUSION 83

Finally, wewant to highlight the work by Boehm et al. [51]. They also take a case study-
based approach for designing an access control system in the domain of SOA. While
their solution is rather limited, their requirements and resulting design principles
strongly align to ours.

3.7 Conclusion

This chapter presented Amusa, an access control middleware for multi-tenant
Software-as-a-Service applications. This research was conducted in close collaboration
with two industry partners, an approach that resulted in a set of key requirements
for access control in SaaS. Amusa in turn offers a management and enforcement
architecture that supports these requirements. More precisely, Amusa enables both
the provider and the tenants to effectively specify their access rules in terms of their
own concepts using three-layered access control management based on attribute-
based tree-structured policies. Amusa then combines the rules of all parties securely
and enforces them at run-time. Moreover, the evaluation showed that Amusa also
requires low development effort and introduces a low and configurable performance
overhead. As a result, we believe that Amusa is a key building block for both managing
and building multi-tenant SaaS applications.

Following up on Amusa, the next chapters discuss the remaining three contributions
of this thesis. Because Amusa addresses the most fundamental challenge for SaaS
access control, i.e., the challenge of enabling the provider and all tenants to express
their access rules on the multi-tenant SaaS application, these contributions all fit
within Amusa: federated authorization can integrate Amusa with the tenant-side
authorization systems for scalable access control management, policy federation
improves the performance of federated authorization and our final contribution
enables the Amusa PDP to securely scale out in order to achieve large amounts of
policy evaluations per second. As the first of these contributions, the next chapter
shifts focus from the provider of a SaaS application to its tenants and presents the
concept of federated authorization.

Chapter 4

Federated authorization

This chapter presents our second contribution: the concept of federated authorization.
More precisely, this chapter focuses on the management overhead and trust issues
that arise for the tenants when their access control policies are configured in the
SaaS application and are evaluated by the SaaS provider. In this regard, federated
authorization externalizes authorization from a SaaS application so that it can be
performed at the premises of the tenants. Federated authorization thereby enables
to centralize the access management of a tenant and at the same time enables that
tenant to enforce a policy on a SaaS application without disclosing this policy nor the
access control data that it requires. While there are still hurdles to be addressed for
applying federated authorization in practice, our experience leads us to believe that
federated authorization is a key building block for access control in future federated
applications.

This chapter stems from both the goal of lowering the management overhead
for tenants as well as from the goal of limiting the disclosure of sensitive tenant
access control data and rules. As such, this chapter focuses on the challenges from
outsourcing and the concern of low management overhead (see Section 1.2). This
chapter is mainly motivated by the case studies of home patient monitoring and the
collaborative care platform (see Section 1.4.1) and is based on our publications at On
The Move 2013 [88] and at HealthInf 2015 [90].

85

86 FEDERATED AUTHORIZATION

4.1 Introduction

As explained in Chapter 1, SaaS applications should enable their tenants to control the
access of their own end-users, e.g., their employees, to their data in the application,
preferably by means of self-service. Most SaaS applications achieve this by allowing
their tenants to configure users and their permissions using an application-specific
dashboard. The Amusa middleware introduced in the previous chapter takes a similar
approach. As a result of this approach, the access rules of the tenants are configured
in the SaaS application itself and are evaluated by the SaaS provider. This leads to
two problems:

Problem 1: management overhead. Firstly, large organizations such as hospitals
typically employ on-premise access control systems for centrally and efficiently
managing their users across their on-premise applications. However, while techniques
for federated authentication enable remote applications to integratewith these systems
in terms of user management, no similar techniques exist for authorization. As a
result, SaaS applications currently only enable their tenants to configure their access
rules in a dashboard of the SaaS application itself. In turn, the organization-wide
access control management of these tenants is scattered and duplicated across the
multiple SaaS applications that it uses, which makes it difficult for a tenant to obtain an
overview of its complete access control management and leads to large administrative
overhead. While this overhead may still be feasible for small organizations, it quickly
becomes unfeasible for larger organizations such as hospitals, eventually leading to
inconsistencies and security holes.

Problem 2: necessary disclosure of sensitive tenant access control data. Sec-
ondly, because the access rules of the tenants are evaluated by the SaaS provider, the
tenants are forced to disclose their access rules and the access control data required
to evaluate these to the SaaS provider. These rules however often require sensitive
user data that are stored in the on-premise systems of the tenant, such as the details
of a patient or a physician in the domain of e-health. Although the tenant trusts the
provider with the data in the SaaS application itself, it does not necessarily want to
trust the provider with sensitive data needed for access control, as also discussed
by other authors, e.g., [210, 150, 32]. This is especially true in privacy-sensitive
domains such as e-health. Moreover, regulatory requirements such as HIPAA [1] or
the European DPD [71] even forbid the tenant to share this data.

These two issues present themselves both for state-of-practice SaaS applications as
well as for state-of-the-art policy-based approaches such as the Amusa middleware.
However, as explained in more detail in the previous chapter, state-of-practice SaaS
applications commonly only support a limited access control model, such as a fixed

INTRODUCTION 87

set of roles to assign to users. As a result, the access rules of an organization are
encoded in a limited access control model, which can be considered as less sensitive
than the more elaborate form of these rules in an access control policy. Similarly,
as the rules are simplified in this encoding, the access control data that has to be
shared with these applications in order to evaluate them is more limited as well. As
such, the problem of having to disclose sensitive access control data can be seen as
relevant to all SaaS applications, but exacerbated when these applications make the
shift towards policy-based access control. Therefore, this chapter assumes the point
of view of state-of-the-art SaaS applications that employ policy-based access control.
Notice that the problem of scalable management on the other hand is equally large
for state-of-practice and state-of-the-art SaaS applications.

To address the two problems described above, this chapter investigates the technique
of federated authorization. In analogy to federated authentication (see Section 2.4.3),
federated authorization externalizes authorization from a remote application in order
to perform it at the premises of another organization. For policy-based access control,
this authorization comes down to policy evaluation. As such, federated authorization
can be applied in the context of SaaS to evaluate the policies of a tenant at the premises
of that tenant. When combined with federated authentication, this technique thereby
enables centralizing the entire access control management of that tenant and at
the same time keeps its sensitive access control policies and access control data
confidential.

Apart from this work, other authors have discussed federated authorization as well
(e.g., [28, 33, 150]). Moreover, domain-specific instances of federated authorization
are already in use in practice (e.g., 3-D Secure for internet payments [4]). In addition,
the recent web technology OAuth (see Section 2.4.3) can be seen as a basic form
of federated authorization. Compared to these approaches, this work focuses on a
generic attribute-based and policy-based access control middleware for federated
authorization and the evaluation of the performance behavior of this middleware.
In addition, we first position federated authorization in the context of SaaS and
afterwards generalize and validate this technique outside the scope of SaaS, i.e., in the
domain of collaborative applications involving more than two parties. This validation
shows that federated authorization can serve as an enabler for addressing multiple
challenges in this domain, leading us to believe that this technique is a necessary
building block for future federated access control in general.

The remainder of this chapter is structured as follows. Section 4.2 demonstrates
the need for federated authorization based on the case study of an e-health
patient monitoring application provided to hospitals. Section 4.3 presents our
generic attribute-based and policy-based access control middleware for federated
authorization in the context of SaaS, thereby discussing the architecture of this
middleware and the required extensions to the policy language XACML. Section 4.4
evaluates the performance behavior of this middleware based on a prototype.

88 FEDERATED AUTHORIZATION

Section 4.5 further discusses our experiences and Section 4.6 generalizes federated
authorization outside the scope of SaaS by validating it in the case study of an e-
health collaboration platform. Section 4.7 provides an outlook towards the future of
federated authorization and Section 4.8 concludes this chapter.

4.2 Motivation and problem illustration

In this section, we motivate this work based on the case study of a patient monitoring
application in the domain of e-health. We first discuss this case study, then list the
resulting requirements for SaaS access control from the point of view of the tenants
and finally show the need for federated authorization.

4.2.1 Case study: a patient monitoring service

While the previous chapter was mainly motivated by the case studies of eDocs and
eWorkforce, this chapter is mainly motivated by a SaaS application in the domain
of e-health, i.e., an application for monitoring patients of cardiovascular diseases at
their homes, provided to hospitals as a service. This case study is based on a number
of research projects [11, 12]. Similar to eDocs and eWorkforce, this case study is a
representative state-of-the-art SaaS application that performs core business activities
and is used by large organizations.

The patient monitoring service (illustrated in Figure 4.1) allows patients of cardiovas-
cular diseases to be monitored continuously after leaving the hospital by wearing

Figure 4.1: The case study that inspired this work: a system for monitoring patients
at their homes, offered to hospitals as a service.

MOTIVATION AND PROBLEM ILLUSTRATION 89

sensors such as a chest band or a wrist band. These sensors collect measurements
such as the electric activity of the heart, the blood pressure or the temperature.
The measurements are sent from the patients to the application back-end using a
smart-phone as an intermediary device and are then stored and processed by the
SaaS provider. More precisely, telemedicine operators employed by this provider
continuously check upon the patients. For this, the application offers an overview
of a patient’s status, showing recent measurements, health charts and an estimated
risk level. If medical assistance is required, the patient’s physician at the hospital is
notified automatically. These physicians can then assess the situation by means of
an overview of the patient’s status similar to that of the telemedicine operators and
can also check upon the status of a patient proactively. A patient’s status can also be
viewed by the patients themselves or by other physicians and nurses at the hospital,
for example when the patient is admitted there. Finally, the application provides
functionality such as patient questionnaires and shared notes on a patient overview.

In this case study, the hospitals are the tenants of the SaaS application and the
patients, physicians, nurses and telemedicine operators are its end-users. Next to the
monitoring application, the hospitals employ other on-premise applications, e.g., for
patient management, and other SaaS applications, e.g., for medical imaging or lab
analyses.

4.2.2 Resulting access control requirements

Because of the nature of the data in the patient monitoring application and the heavy
regulation of the domain of e-health, security and in particular access control are of
high importance to this application. As explained in Chapter 1, both the provider and
the tenants should be able to constrain access to a SaaS application. This is also the
case for this patient monitoring application. Firstly, the provider wants to constrain
its tenants, e.g., to ensure that a hospital has enough billing credit to perform a
certain action or is billed afterward. Secondly, the patient monitoring application is
provided to multiple hospitals (i.e., multi-tenancy) and the provider should make sure
that one hospital cannot access the monitoring data of another hospital (i.e., tenant
isolation). Finally, e-health applications are subject to regulatory requirements (e.g.,
the European DPD [71]) and even if the data is hosted by the provider, the hospital is
still accountable for it. Therefore, the hospitals have to be able to apply their own
access rules on their data in the application as well.

While the previous chapter already focused on these requirements, this chapter zooms
in on the third point, i.e., the access control of the tenants on the SaaS application. In
addition to supporting a wide variety of access control concepts for tenants to express
there access rules, this access control should adhere to two requirements from the

90 FEDERATED AUTHORIZATION

point of view of the tenants: (i) it should provide scalable management, (ii) it should
take into account sensitive access control data.

Requirement 1: scalable management. As a first requirement, the access control
offered to tenants should provide scalable management for these tenants. More
precisely, the main goal of the tenants is to limit the access of their own end-
users to their own data in the SaaS application. This access control is therefore
highly interrelated with the user management of these tenants: user accounts have
to be created, access control policies have to be deployed and the access control
data of the users such as their roles in the organization, their department, their
shifts and their assigned patients have to be managed. However, organizations
such as a hospital typically employ multiple on-premise and SaaS applications, they
can have a medical staff of thousands and they treat even more patients. Manual
user management on this scale would incur too much administrative overhead and
would quickly lead to errors, inconsistencies and security holes. Therefore, hospitals
typically have extensive centralized security systems at hand, e.g., organization-wide
patient management systems. When employing SaaS applications such as the patient
monitoring application, this degree of centralization should be upheld and security
management should remain centralized.

Requirement 2: sensitive access control data. Secondly, the access control
management facilities offered to tenants should enable the tenants to employ sensitive
access control data in their policies. For example, a typical access rule employed by a
hospital in this case study can be summarized as follows: “a physician can only view
or alter patient data if the patient who owns the data is in a life-threatening situation
or if the physician is treating that patient or if the data is relevant to the specialization
of the physician and the patient has given consent to the physician”. This small rule
already requires user roles, treating relationships, patient consent, resource content
and more. Clearly, some of this access control data is sensitive in nature, such as
the list of patients being treated by a physician, the diseases of a patient or patient
consent. While the hospital trusts the provider with the monitoring data in the SaaS
application, it does not necessarily want to trust the provider with this sensitive access
control data. Moreover, regulatory requirements such as HIPAA [1] or the European
DPD [71] even forbid the hospital to share this data.

These two requirements lead to the need for federated authorization.

MOTIVATION AND PROBLEM ILLUSTRATION 91

4.2.3 The need for federation authorization

The need for federated authorization arises from the requirements listed in the
previous section.

Firstly, the need for federated authorization arises from the need for scalable
management (Requirement 1). This need however is not new, it already arose when
web applications matured and were adopted by large enterprises. To address this
need, the technique of federated authentication [2, 6] was developed. As explained
in Section 2.4.3, federated authentication enables a web or SaaS application to
externalize authentication from the provider to the premises of the tenant. For
SaaS, the advantages of this technique are threefold: (i) it allows the tenants to employ
any preferred means of authentication, (ii) it gives the tenants full control over the
access control data shared with the provider and (iii) it allows the tenants to integrate
the user management of this SaaS application with their on-premise user management
systems, thereby reusing these and achieving scalable centralized user management.

However, user management is only part of the complete access control management:
after users have been defined, the tenants have to specify the access policies
that constrain them. While federated authentication allows to centralize the user
management and the access control data of these users at the tenant premises,
the policies themselves still have to be configured using a dashboard in the SaaS
application and are still located at and evaluated by the provider. This has two
disadvantages: Firstly, the tenants still have to specify their policies for every
individual application they employ, which increases both the initial management
overhead when a new tenant adopts the application and the overhead of the
authorization management afterwards. This fails to address the need for scalable
management (Requirement 1) and will lead to incorrect or inconsistent policies. As
a second disadvantage, the tenants are still forced to disclose their policies and the
access control data required to evaluate them, which goes against the need to employ
sensitive access control data in these policies (Requirement 2). As a result, this
disadvantage either limits the expressiveness of the policies of the tenants or hinders
the adoption of the SaaS application itself.

Related work exists for addressing each of these disadvantages. On the one hand,
administrative scalability for authorization can be achieved using automated policy
deployment. For example, Stihler et al. [193] propose a system in which a consumer of
a web service automatically deploys its policies at the web service and efforts such as
SPML [68] try to standardize the resulting configuration interfaces. However, while
these techniques provide administrative scalability, all policies are still evaluated by
the provider and they still involve disclosure of sensitive tenant access control data.

On the other hand, confidential policy evaluation can be achieved by encrypting the
access control policies and access control data when sharing them with the provider.

92 FEDERATED AUTHORIZATION

This is an instance of a more generally known form of encryption called homomorphic
encryption (e.g., see [112]). Homomorphic encryption allows computations to be
performed on encrypted data so that the result equals the encrypted form of the
result of the computations on the original data. In other words, this technique would
enable computation on data without knowing this data. This would also apply to
the problem of confidential policy evaluation by enabling the provider to evaluate
encrypted policies based on locally-available encrypted tenant attributes. However,
the performance overhead of generic homomorphic encryption is still too much for
practical applications [112]. A possible solution is to design problem-specific instances
of homomorphic encryption. For confidential policy evaluation, this approach has
been explored by Asghar et al. [34]. In this case, the performance overhead is in the
order of hundreds of milliseconds for evaluating a policy. The expressiveness of the
supported policies is still limited however and this approach does not address the
additional challenge of the administrative overhead.

Finally, XML gateways such as IBM Tivoli Access Manager [129] can be applied to
enforce access control on remote services or applications. An XML gateway is placed
at the perimeter of the organization and reviews every request to a remote service,
similar to a firewall. This approach also allows enforcing tenant access control policies
based on local access control data. However, the policies are limited to reasoning
about messages sent to and from the application and as a result, these gateways
are mainly used for transparently adding credentials or for encryption in practice.
Moreover, SaaS applications are often designed to be used by mobile users, i.e., users
that access the application from outside the premises of their organization, while
XML gateways require every request to originate from the physical network of the
tenant.

In conclusion, no approach exists that can provide both scalable access control
management and confidential policy evaluation. To address this gap, we investigate
the technique of federated authorization.

4.3 Federated authorization

In order to address the requirements discussed in the previous section, we investigate
the technique of federated authorization. Similar to federated authentication, the goal
of federated authorization is to externalize authorization from a remote application
(see Figure 4.2). As such, when a user makes a request to the SaaS application, the
application asks the access control system of the tenant to which that user belongs
for an access decision. This system evaluates its policies locally for this request and
returns its decision, which the application enforces afterwards. Notice that for a SaaS
application, the provider also evaluates its policies about the tenant as a whole and

FEDERATED AUTHORIZATION 93

SaaS application

Appl.
data

1
Tenant

User
data

Pol

3

2
4

5

Figure 4.2: High-level overview of federated authorization applied to SaaS: When a
user makes a request to a SaaS application (step 1), this application asks the access
control system of the tenant to which this user belongs for an access control decision
(step 2). This system evaluates its policies locally for this request (step 3) and returns
its decision (step 4), which the application enforces afterwards, e.g. by returning the
requested resource to the user (step 5).

combines this decision with the decision of the tenant so that the request is only
permitted if both parties permit it as described in the previous chapter.

As a result, federated authorization allows the tenant to enforce access control on
a SaaS application without having to disclose its policies nor the access control
data required to evaluate them. In addition, federated authorization enables the
tenant to integrate the policy management of a SaaS application with its on-
premise management systems. When combined with federated authentication,
federated authorization thus enables the complete centralization of the access control
management of that tenant. Finally, while it was not our direct goal, federated
authorization also enables a tenant to enforce any access rule expressed in any
format and even employ any preferred supporting access control system, as long as it
adheres to the interfaces agreed upon with the SaaS application. As such, federated
authorization can also be regarded as a tactic to address the tenant variability challenge
for access control discussed in the previous chapter.

In addition to this work, the technique of federated authorization has also been
discussed by other authors, for example byHulsebosch et al. in their study on federated
access control in e-science [175]. In addition, simple domain-specific instances of
federated authorization are already used in practice, e.g., for credit card payments
where the bank of the customer is contacted to authorize a payment. Similarly, OAuth
(see section 2.4.3) can be regarded as a basic form of federated authorization in which
a policy is evaluated once, possibly by a third party such as a tenant, and the decision
is cached afterwards.

Compared to these approaches, this work presents a generic investigation of
federated authorization based on attribute-based access control policies. The resulting

94 FEDERATED AUTHORIZATION

architecture therefore encompasses all of these approaches. To achieve this, the rest of
this section describes the key features required for realizing federated authorization,
a generic run-time middleware architecture and the required extensions to current
policy languages. Afterwards, the next sections evaluate the performance behavior
of federated authorization and validate the potential of this technique in federated
applications outside the scope of SaaS.

4.3.1 Key features for supporting federated authorization

As explained in the introduction, we discuss federated authorization for SaaS
applications that employ policy-based access control with attribute-based policies. In
this context, federated authorization externalizes the evaluation of the tenant policies
from the provider to the tenant. With respect to policy-based access control (see
Section 2.3.2), federated authorization requires three additional features: (i) requesting
an access control decision from the access control system of the tenant, (ii) handling
local and remote attributes and (iii) handling local and remote obligations. Notice
that these three features are required to support the most generic form of federated
authorization, but may not be needed in every practical deployment. For each of
these new features, we here determine what should be added to the XACML reference
architecture (see Section 2.2.4) and to current policy languages.

Key feature 1: Requesting tenant access control decisions

As a first key feature, the provider should be able to request an access decision from
the access control system of the appropriate tenant for a certain request to the SaaS
application. This feature impacts both the architecture and the policy language.

Architecture. Architecturally, this feature requires the tenant to provide a service
to receive decision requests from the providers of the SaaS applications it employs.
Such a request should identify the provider and should contain information about the
subject, the resource, the action and the environment, similar to a request from a PEP
to a PDP. Using this information, the access control system of the tenant determines
and evaluates the applicable policies and returns its response. This response contains
the decision itself (permit or deny) and possibly obligations, similar to a response
from a PDP to a PEP. Notice that the provider also requires a way to identify a user
and a way to know to which tenant a user belongs. For this, we assume that the
provider has an authentication infrastructure in place that understands the concept
of tenants.

FEDERATED AUTHORIZATION 95

Policy language. In terms of policy languages, the policy language should allow
the provider to refer to the access control decision service of the tenant and specify
how the result should be processed, similar to the result of an on-premise policy.

Key feature 2: Handling local and remote attributes

As a second key feature, all required attributes should be made available to the
respective policies. Because the provider reasons about its tenants as a whole (e.g., the
hospital), the subjects of the policies of the provider are its tenants, the resources are
the application data and the environment is the SaaS application. Thus, all attributes
required by the provider policies are available locally. The policies of the tenants
on the other hand reason about their end-users (e.g., the physicians and nurses of
the hospital). Therefore, the subjects of the policies of the tenants are its end-users,
the resources are the application data and the environment comprises both the SaaS
application and the own access control systems. The data about the end-users of the
tenant and the data in these systems are stored at the premises of the tenant, while
the rest is hosted by the provider. Thus, the attributes required by the tenant policies
are distributed over tenant and provider. As a result, evaluating the tenant policies
requires to be able to employ both local and remote attributes. This impacts both the
architecture and the policy language.

Architecture. Architecturally, this feature requires the attributes of the resources in
the SaaS application and the attributes of the provider-side environment to be made
available to the tenant for evaluating the tenant policies tenant-side. In addition,
while attributes can be added to the initial request from the provider to the tenant, it
is generally not possible to determine the required attributes for evaluating a policy
for a certain request up-front. Therefore, the provider should provide a service to the
tenant to dynamically fetch required attributes during policy evaluation.

Policy language. When evaluating the tenant policies, the policy evaluation engine
should know where to find the required attributes. Therefore, the policy language
should allow to define the location of each attribute referenced in the policies.

Key feature 3: Handling local and remote obligations

As a third key feature, the tenant should be able to handle both tenant-side and
provider-side obligations. As explained in Section 2.2.4, obligations express operations
that should be executed in conjunction with enforcing the access decision. An example
of a tenant-side obligation is logging and an example of a provider-side obligation is

96 FEDERATED AUTHORIZATION

updating the access control history of a resource. Allowing the tenant to employ both
local and remote obligations impacts both the architecture and the policy language.

Architecture. Architecturally, this feature requires the response from the tenant
policy evaluation service to contain the obligations specified by the tenant which
should be fulfilled by the provider. This was already mentioned before. The tenant
response should not contain locally fulfilled obligations.

Policy language. In terms of policy languages, the policy language should allow
the tenant to specify where obligations should be fulfilled: locally or remotely.

4.3.2 Generic middleware architecture

Based on the architectural requirements listed in the previous section, we now present
a generic policy-based and attribute-based architecture for federated authorization.
Our goal here is to provide a minimal architecture that supports these requirements.
We therefore align to the XACML reference architecture for policy-based access
control systems (see Section 2.3.2) as closely as possible. In this section, we first
describe the decomposition of the architecture, then illustrate the resulting access
control flow and finally describe the variation points left open by this generic
architecture.

Architecture decomposition. Figure 4.3 shows the decomposition of the middle-
ware architecture. First of all, the provider hosts the SaaS application and therefore
also the PEP; no application components are located at the tenant side. Since both
parties evaluate policies and process obligations, both have a PAP, a PDP, a Context
Handler, one or more PIPs and an Obligation Service. The provider PIPs contain the
attributes of the resources in the SaaS application (AR), the attributes of the subjects of
the policies of the provider (AS,P) and the attributes of the provider-side environment
(AE,P). The tenant PIPs contain the attributes of the subjects of the policies of the
tenant (AS,T) and the attributes of the tenant-side environment (AE,T). For handling
decision requests, the tenant offers a Remote Policy Decision Point (RPDP) to the
provider. For handling attribute requests, the provider offers an attribute service to
the tenant. The provider PDP is extended with functionality to contact the RPDP and
the tenant Context Handler is extended with functionality to contact the provider
attribute service. To summarize, the resulting interface between provider and tenant
consists of two services: the tenant policy evaluation service and the provider attribute
service. Notice that the architecture still allows the tenant to use the tenant-side
components for its on-premise applications as well, which is not shown in the figure.

FEDERATED AUTHORIZATION 97

Figure 4.3: The generic architecture for federated authorization. PP and PT are the
provider and tenant policy sets respectively and AR, AS,P , AE,P , AS,T and AE,T

are as defined in Section 4.3.2.

Access control flow. Figure 4.4 illustrates the access control flow that results from
the generic architecture. The presented flow starts after the provider and tenant
policies are loaded from their respective PAPs (step 0) and the end-user has been
successfully authenticated. The remainder of the flow is as follows:

Step 1 When an end-user makes a request to the application, the PEP constructs an
access control request and sends this to the local Context Handler.

Step 2 That Context Handler forwards this request to the local PDP.

Step 3 The provider PDP determines the applicable provider policies and evaluates
these, thereby dynamically requesting attributes via the Context Handler. When
the PDP encounters a remote policy reference, it asks the Context Handler to
determine how and where to contact the appropriate tenant. The PDP then
constructs a decision request and sends it to the tenant RPDP.

Step 4 From the tenant point of view, the RPDP acts similarly to a PEP and forwards
the request of the provider to the tenant Context Handler.

Step 5 That Context Handler forwards this request to the tenant PDP.

Step 6 The tenant PDP determines the applicable tenant policies and evaluates these for
this request, thereby dynamically requesting attributes from the local Context

98 FEDERATED AUTHORIZATION

Figure 4.4: The access control flow resulting from the generic architecture of Figure 4.3.
C.H. is Context Handler, Ob.S. is Obligation Service, PP and PT are the provider and
tenant policy set respectively, PEP, PDP, PIP and PAP are as defined in Section 2.3.2
and AR, AS,P , AS,T , AE,P and AE,T are as defined in Section 4.3.2. For readability
reasons, the provider attribute service is not shown explicitly.

Handler. That Context Handler fetches tenant attributes locally and contacts
the provider attribute service for provider attributes. The tenant PDP eventually
returns its response (i.e., decision and obligations) to the local Context Handler.

Step 7 The Context Handler returns the response to the RPDP.

Step 8 The RPDP fulfills tenant obligations using the tenant Obligation Service and
removes these from the response.

Step 9 The RPDP returns the resulting response to the provider PDP.

Step 10 The provider PDP combines the tenant decision with the result of the provider
policies so that the request is only permitted if both parties permit it and returns
the overall response to the provider Context Handler.

Step 11 The provider Context Handler returns the response to the PEP.

Step 12 The PEP fulfills the remaining obligations using the provider Obligation Service
and enforces the decision.

FEDERATED AUTHORIZATION 99

Variation points. This architecture deliberately leaves open a number of variation
points: the attribute fetching strategy, the channel protocols and the channel security
properties.

Attribute fetching strategy. Thegeneric architecture leaves open the attribute fetching
strategy for tenant policy evaluation. In general it is not possible to determine the
required attributes for evaluating a policy for a certain request up-front and it should
therefore be possible to fetch attributes during a policy evaluation. However, there
are multiple ways to do this, ranging from one-at-a-time to combined requests, using
caching or not. Moreover, the provider could manually configure some attributes to be
included in the initial policy evaluation request to the tenant so that these attributes
should not be fetched by the tenant later on.

Channel protocols. The generic architecture leaves open which protocol to use for
the attribute channel or the decision channel. For example, the SAML standard for
federated authentication [2] defines two alternatives for web applications: in-band
communication using HTTP redirects through the end-user browser and out-of-band
communication using direct connections between identity provider and relying party,
such as SOAP web services.

Channel security. The generic architecture leaves open the security properties of
the attribute channel or the decision channel, such as transmission security or
authentication.

4.3.3 Extensions to current policy languages

In addition to the supporting architecture, the three key features to support federated
authorization identified in Section 4.3.1 all required policy language extensions. To
illustrate the practical impact of these requirements, we have extended the XACML 2
policy language [165]. We opted for XACML because of its wide-spread use in both
academia and industry, because of its active development and because STAPL (see
Section 2.3.1) was not yet in development at the time of this work. Because STAPL
and XACML share the same core model however, the required extensions would be
very similar.

In this section we describe the extensions that we introduced, their specifications are
provided in Appendix B. We start by briefly introducing XACML, for a more detailed
explanation we refer to Section 2.3.1.

TheXACMLpolicy language. TheXACML policy language is defined in the XACML
standard in addition to the reference architecture for policy-based access control

100 FEDERATED AUTHORIZATION

systems [165]. XACML employs attribute-based policy trees and expresses policies
using XML. Three main elements are defined: <PolicySet>, <Policy> and <Rule>.
A policy set can contain multiple policies and a policy can contain multiple rules. A
rule specifies an effect (permit or deny), attribute-based conditions for this to hold
and obligations to fulfill with it. A policy combines the results of its rules using
a rule-combining algorithm (e.g., deny overrides) while a policy set combines the
results of its children using a similar policy-combining algorithm. Each of these three
elements also specifies to which requests it applies in terms of attributes.

Referencing remote policies. In order to reference remote policies, the <Remote-
PolicyReference> element is introduced. This element refers to a tenant as a whole,
which behaves as a remote policy from the point of view of the provider. This approach
is similar to the deductive policies introduced by Lischka et al. [150]. Evaluating
a <RemotePolicyReference> returns a policy evaluation result similarly to the
<Policy> element and the element can be part of a policy set. The PolicyId attribute
specifies the id of the remote policy. Following the XACML design principles, it is left
to the Context Handler to determine how and where to contact it. A remote policy
reference can also contain a description, a target and obligations for local use.

Handling local and remote attributes. In order to differentiate between local and
remote attributes, we follow the XACML design choice of having the Context Handler
infer the location of an attribute based on its id instead of defining attribute properties
declaratively. Thus, XACML is not extended for this requirement, but we do require
the location of every attribute to be configured in the Context Handler.

Handling local and remote obligations. In order to differentiate between tenant
and provider as obligation targets, the <Obligation> element is extended with the
optional FulfillWhere property. This property specifies whether the obligation
should be fulfilled locally (with the tenant) or remotely (with the provider), local
fulfillment being the default. The new property is only to be used in tenant policies.
It is the responsibility of the tenant to remove local obligations from its response so
that the provider can interpret all obligations as before.

4.4 Performance evaluation

Following the description of the middleware supporting federated authorization, this
section evaluates the concept of federated authorization in terms of performance
based on a prototype of this middleware. More precisely, this performance evaluation

PERFORMANCE EVALUATION 101

investigates the impact of federation on the end-to-end time it takes for the provider
to reach an access control decision.

4.4.1 Test setup

The tests compare three different cases of evaluating the tenant policies:

1. Complete provider-side authorization: both the policies of the tenant and its
access control data are located at the provider side. As a result, the provider
evaluates the tenant policies solely based on local access control data. This case
can be expected to give the best performance results.

2. Provider-side authorization with federated authentication: the access control
data of the tenant is located at the tenant side, but its policies are located at the
provider side. As a result, the provider evaluates the tenant policies, fetches
provider access control data locally and fetches tenant access control data from
the tenant attribute service.

3. Federated authorization: both the policies of the tenant and its access control
data are located at the tenant side. As a result, the provider requests an access
control decision from the tenant RPDP, which fetches tenant attributes locally
and fetches provider attributes from the provider attribute service.

Notice that of these three approaches, only federated authorization keeps sensitive
access control data of the tenant confidential. Also notice that the policies of the
provider are not evaluated in the tests for clarity because federated authorization is
only used to externalize the evaluation of the policies of the tenant.

Prototype. The prototype of the middleware implements the architecture described
in Section 4.3.2. As a result, the prototype contains four main components: (i) the
provider PDP, (ii) the tenant PDP (iii) the provider attribute service and (iv) the
tenant attribute service. For the PDPs, the prototype extends the SunXACML policy
evaluation engine1 with the new <RemotePolicyReference> element. Attributes
are stored in SQLite databases1. Cross-organizational communication is realized
out-of-band using SAML [2] and the SAML profile of XACML [154] over SOAP
web-services1 implemented on top of Apache Tomcat 71 using theApache CXF services
framework1 and the OpenSAML Java library1. For similarity, both the provider and
the tenant PDP are run on top of Tomcat. In order to focus on policy evaluation

1http://sourceforge.net/projects/sunxacml/, http://www.sqlite.org/,
http://cxf.apache.org/, http://tomcat.apache.org/,
https://wiki.shibboleth.net/confluence/display/OpenSAML/

102 FEDERATED AUTHORIZATION

time, the prototype also omits channel encryption or authentication. The prototype
(6KLOC) is publicly available2.

Deployment. In our set-up, the provider PDP, the tenant PDP, the provider attribute
web service and the tenant attribute web service are all run on a separate machine,
each with 4GiB RAM and two cores of 2.40GHz running Ubuntu 12.04. In order to
focus on the impact of remote communication, local attribute databases are run on
the same node as the services that use them. To simulate the distance between tenant
and provider in a realistic SaaS setting, a constant single-way network delay of 5ms
between tenant and provider is applied. In order to avoid influence of parallelism, the
tests are run sequentially and PDP evaluation is done single-threaded.

Employed policies. The tests involve artificial policy evaluations that require 10,
20 and 30 attributes. Our experience in in our case studies shows that these amounts
represent modest to large policies. Because multiple strategies for fetching attributes
exist ranging from one-at-a-time to combined requests (see Section 4.3.2), the tests
also compare the two extreme strategies: fetching all required attributes separately
and fetching all attributes at the same time as one multi-valued attribute. All attributes
are fetched just-in-time and no attribute caching is used in order to simulate the worst
case.

Test protocol. Each test starts with five warm-up requests and is repeated until the
confidence interval lies within 1% of the sampled mean for a confidence level of 95%.

4.4.2 Results

Figure 4.5 shows the results for the case in which all attributes are fetched separately3.
More precisely, Figure 4.5 shows the decision time in relation to the amount of single-
valued attributes. If the policy only requires tenant attributes (Figure 4.5a), provider-
side authorization with federated authentication performs significantly worse since
each attribute is fetched separately when the provider PDP requires it and each query
takes about 20ms as a result of the network latency and XML operations. If the policy
only requires provider attributes (Figure 4.5b), federated authorization performs worse.
Complete provider-side authorization and provider-side authorization with federated
authentication have the same results in this case since all attributes are hosted by the
provider.

2http://people.cs.kuleuven.be/~maarten.decat/doa-trusted-cloud-2013/
3The whole set of results of the tests is publicly available at2.

PERFORMANCE EVALUATION 103

10 20 30
Number of attributes

0

100

200

300

400

500

600

Po
lic

y
ev

al
ua

tio
n

tim
e

(m
s)

8.10 11.6 15.5

204

380

550

35.7 38.6 42.6

Full provider-side Provider-side Federated

(a) Only tenant attributes

10 20 30
Number of attributes

0

100

200

300

400

500

600

Po
lic

y
ev

al
ua

tio
n

tim
e

(m
s)

8.10 11.6 15.58.10 11.6 15.5

235

412

582
Full provider-side Provider-side Federated

(b) Only provider attributes

Figure 4.5: Decision time in terms of the amount of single-valued tenant and provider
attributes.

0 20 40 60 80 100
Percentage of tenant attributes

0

100

200

300

400

500

600

Po
lic

y
ev

al
ua

tio
n

tim
e

(m
s)

15 15 15 15 15 1515

134

246

353

451

550
582

483

385

277

164

42

(53,315)

Full provider-side Provider-side Federated

Figure 4.6: Decision time in terms of the percentage of tenant attributes in a total of
30 attributes.

10 20 30
Attribute size

0

5

10

15

20

25

30

35

Po
lic

y
ev

al
ua

tio
n

tim
e

(m
s)

4.28 4.05 4.26

27.5 27.3 27.8

32.7 31.6 32.1

Full provider-side Provider-side Federated

(a) Large tenant attribute

10 20 30
Attribute size

0

10

20

30

40

50

60

Po
lic

y
ev

al
ua

tio
n

tim
e

(m
s)

4.28 4.05 4.264.28 4.05 4.26

56.3 56.8 56.7
Full provider-side Provider-side Federated

(b) Large provider attribute

Figure 4.7: Decision time in terms of the amount of values in a single large provider
or tenant attribute.

104 FEDERATED AUTHORIZATION

Figure 4.6 combines the tests with multiple tenant attributes and multiple provider
attributes. This figure shows the decision time in relation to the percentage of tenant
attributes in a total of 30 attributes. The figure firstly shows that complete provider-
side authorization performs best in all cases. This is a natural consequence of the
fact that complete provider-side authorization requires no remote queries. More
interestingly however, Figure 4.6 also shows that federated authorization outperforms
provider-side authorization with federated authentication when a little more than
half of the attributes are tenant attributes. The asymmetry is a consequence of the
extra request needed with federated authorization with respect to provider-side
authorization with federated authentication.

Figure 4.7 shows the results for the case in which all required attributes are fetched
at once as a single multi-valued attribute. More precisely, Figure 4.7 shows the
decision time in relation to the size of the single attribute, i.e., the amount of values
in this attribute, in this case 10, 20 or 30 values. If the policy only requires a tenant
attribute (Figure 4.7a), complete provider-side authorization again performs best and
both other cases perform similarly since they both involve a single attribute request
between provider and tenant. The difference between provider-side and federated
authorization is due to the complexity of the tenant-side operation: attribute fetch
versus policy evaluation. If the policy only requires a provider attribute (Figure 4.7b),
federated authorization performs significantly worse than the others, since only
this case requires remote queries. In all cases, the decision time remains constant
independent of the size of the required attribute. The absolute difference between
Figure 4.7a and Figure 4.7b is caused by two requests instead of one. The absolute
difference between many and large attributes in the complete provider-side case
is caused by the fact that the amount of required XML translations grows linearly
with the amount of attributes. Since these amounts are constant with respect to the
attribute size, we did not combine them as in Figure 4.6.

Summary. From these results, we can conclude that federated authorization comes
with a performance penalty compared to complete provider-side authorization.
However, depending on the relative amount of tenant attributes in the tenant
policies, federated authorization can achieve better performance than provider-
side authorization with federated authentication. To illustrate with data from a
realistic case, the example policy rules for the patient monitoring application require
significantly more tenant attributes than provider attributes: the tenant hosts the
subject roles, treating relationships, patient consent and patient diseases while the
provider only hosts ownership relations and the application data itself. As a result,
federated authorization has the ability to actually improve performance for this case.

DISCUSSION 105

4.5 Discussion

In the previous sections, we illustrated the need for federated authorization in SaaS
applications, presented a generic architecture for this technique and evaluated its
performance characteristics. In this section, we further discuss the trust, security and
privacy implications of federated authorization and discuss potential performance
improvements.

4.5.1 Trust implications

From the point of view of the provider, federated authorization has no impact on the
required trust in the tenant: since tenants enforce access control on their own data in
the application, they have no incentive to provide false or incorrect decisions.

However, from the point of view of the tenants, federated authorization does affect
the required trust in the provider. Most importantly, federated authorization lowers
the required trust in the provider since it removes the need to share sensitive access
control data and policies. This was one of our explicit requirements for this technique.
However, a potential threat here lies in the fact that the provider could still infer
information about this data and policies, e.g., by re-engineering the policies, using
the collection of access control requests and responses from the tenant collected
over time. For this issue, we argue that the possibly inferred knowledge is limited
since both the tenant policies and the access control data used for evaluating them
are kept unknown. However, future work is required to answer this question more
quantitatively, for example by using techniques such as logical abduction.

In addition to the threat of knowledge inference, two trust requirements still exist:
the tenant still has to trust the provider (i) for full mediation, i.e., that it is contacted
for every request to the SaaS application and (ii) for correct decision enforcement,
i.e., that its decision is actually enforced correctly by the provider. Notice however
that both issues were also present with provider-side authorization and that although
federated authorization cannot remove these trust requirements, it does provide
a basis for mitigating them: Full mediation is still not provable, but does become
verifiable since the tenant is able to experimentally verify that it is contacted for
every request to the SaaS application through sample-based testing. Similarly, correct
decision enforcement becomes experimentally verifiable as well. Moreover, it can
be made provable by extending the policy evaluation communication protocol with
non-repudiation techniques [137]. However, these techniques are known to have a
large architectural impact (e.g., on performance) and their incorporation would not
be trivial.

106 FEDERATED AUTHORIZATION

4.5.2 Security implications

While federated authorization lowers the required trust in the provider, it does also
introduce new security threats.

From the point of view of a network attacker, the main difference between provider-
side and federated authorization is the externalization of the policy evaluation process.
This results in a new communication channel between a tenant and the provider,
which introduces a denial of service threat: since a tenant decision is required for
every request to the SaaS application, blocking the channel or the services is a way
to deny the use of the application for a specific tenant. This threat cannot be easily
mitigated and as a result, there should be a fallback decision configured in case the
tenant cannot be contacted. The channel should also be secured against the threats of
information disclosure, tampering and spoofing and against attacks such as replay.
For SOAP web services, WS-Security [144] provides the necessary security primitives.

4.5.3 Privacy implications

Apart from trust and security, federated authorization also has an impact on privacy.

As discussed up until now, federated authorization has two main benefits: it enables
to centralize the authorization management of an organization and it benefits
confidentiality by enabling an organization to enforce a policy on an application
without having to disclose this policy nor the data that it requires. While we have
not explicitly discussed it as such, privacy was one of the main drivers for this
confidentiality within the case study of the patient monitoring system. In this case,
the hospital primarily does not want to share the privacy-sensitive data required to
evaluate a policy such as names or pathologies of patients. By extension, the hospital
may even be forbidden to share it because of legislation such as the European Data
Protection Directive [71]. As such, federated authorization can benefit privacy with a
focus on the confidentiality of privacy-sensitive data.

Privacy however is more than confidentiality [91]. Other aspects are amongst others
the disclosure of the identity of a person or the abilities to observe or link the actions
of a person across multiple applications. In this regard, the effect of federated
authorization can be both positive and negative. For example, in case the SaaS
provider is not trusted, federated authorization also enables the use of pseudonyms,
which benefits privacy by avoiding the release of the identity of a subject. In case a
person does not trust the organization at which authorization is centralized however,
federated authorization has a negative effect on privacy since it facilitates centralized
control, linkability and observability. These issues are the result of designing this
technique for untrusted SaaS providers and cannot easily be addressed.

VALIDATION OF FEDERATED AUTHORIZATION IN A WIDER CONTEXT 107

4.5.4 Performance

As shown by our performance evaluation (see Section 4.4), federated authorization can
be used as a performance tactic in a federated context by bringing policy evaluation
to the data that it requires instead of the other way around. However, compared
to complete provider-side authorization, federated authorization does come with a
non-negligible performance penalty. Complete provider-side authorization however
forces the tenant to disclose sensitive access control data to the provider. Therefore,
we can conclude that federated authorization poses a clear trade-off between trust
and performance.

Towards the future, the performance of federated authorization can be further
improved. First of all, the performance evaluation shows that the overhead of federated
authorization is highly dependent on the amount of requests between the provider and
the tenant. Therefore, a good strategy for fetching attributes is essential to improve
performance. This has also been discussed by Brucker et al. [58].

Secondly, the use of caching also has the ability to lower the required provider-tenant
communication, for example by caching attributes or access decisions. However,
caching also has an impact on security as it can lead to policy evaluation based on
stale attributes or even stale cached access decisions.

Finally, a more fine-grained and dynamic policy deployment strategy also has the
ability to improve performance, even while maintaining the trust advantages. This
chapter has investigated two extremes: the tenant policies are either completely
evaluated by the provider or completely by the tenant. Based on the location of
the required access control data and its sensitivity, the tenant policies could be split
and distributed for optimal performance while maintaining the confidentiality of
the tenant access control data. Since access control is a security feature, the proven
correctness of this operation is essential. In the next chapter, we present a technique
to automatically split and deploy the tenant policies across tenant and provider for
improved performance.

4.6 Validation of federated authorization in a wider
context

In the previous sections, we discussed the technique of federated authorization in
the context of SaaS. Similar to federated authentication however, this technique is
applicable outside the scope of SaaS as well. Therefore, as a generalization of federated
authorization and a validation of its potential, we applied this technique to a second

108 FEDERATED AUTHORIZATION

case study, i.e., a collaboration platform in the domain of e-health. This case study can
be seen as more complex than SaaS because more than two parties have to collaborate.

In this section, we first describe the case study, then highlight the requirements for
access control and finally discuss the role of federated authorization.

4.6.1 Case study: a collaborative care platform

In order to validate the potential of federated authorization, we applied it to the
case study of a collaboration platform in the domain of e-health. This case study is
an example of the multiple collaboration platforms that are currently being created
in the domain of e-health in order to facilitate collaboration between increasingly
specialized care organizations. This case study is based on the O’CareCloudS research
project [15].

The collaboration platform in this case study aims to facilitate information sharing
between the multiple organizations that provide home care to a certain care receiver,
such as a physiotherapist, a general practitioner, service flats and a hospital. The
platform therefore digitizes the information that these organizations share, such as
prescriptions of and notes about the care receiver.

A collaborative application such as this collaboration platform can be seen as an
extension to the SaaS. More precisely, while the federation of a SaaS application
only consists of multiple one-on-one collaborations between the provider and each
tenant, the federation of a collaborative application consists of a larger amount of
organizations that all have to work together.

Figure 4.8 illustrates the federation of organizations for the care platform. While
this figure only illustrates a part of the complete federation, it already shows that a
large amount of organizations is involved, such as general practitioner practices,
elder homes, daily care organizations, physiotherapist practices, home nursing
organizations, hospitals and catering services. Some of these are directly involved
(e.g., the meal delivery service), others indirectly because of business relationships
(e.g, the caterers) or because of the integration of the platform with the Electronic
Health Record (EHR) for sharing patient data on a wider scale (e.g., other hospitals).
Figure 4.8 also illustrates that the organizations in the federation are of very different
nature, ranging from core-medical (e.g., general practitioners and hospitals) to
supporting (e.g., caterers), and from large organizations (e.g., hospitals) to small
organizations (e.g., a medical imaging practice) and even individuals (e.g., family,
friends, general practitioners). Moreover, this federation is dynamic in the sense that
new organizations can join the federation over time or others can leave.

The data shared in this federation via the collaboration platform can either be located

VALIDATION OF FEDERATED AUTHORIZATION IN A WIDER CONTEXT 109

Family, friends,
neighbours, ...

General
pracitioners

Caterer 1

Caterer 2
Meal

delivery

Physio-
therapist

Care
Platform

Hospital 1

Service
flats

Facebook

EHR

Hospital 2 Hospital 3

Pharmacists

Medical
imaging

...

...

...

...

Pol

Pol

Pol

Pol

PolPol

Pol

Figure 4.8: Part of the federation of organizations involved in the collaborative care
platform. As illustrated, such a platform quickly leads to a federation of a large
amount of organizations and individuals of different nature. Moreover, because every
organization remains a separate domain of management, the access control data
(indicated by the cans) and the policies that apply to the care platform are scattered
across the federation.

in the platform itself, e.g., in case a home nurse submits a summary of his or her visit
to the patient in a web front-end, or at the owning organization, e.g., in case a hospital
shares the data about a patient managed by its patient management application. In
any case, the other organization accesses this data through the care platform so that
the platform acts as a central hub.

4.6.2 Access control requirements

While the collaboration platform aims to facilitate information sharing between the
involved organizations, this information is sensitive, personal and medical. Therefore,
the platform should also enable more controlled information sharing. To achieve this,
the collaboration platform should perform access control.

In this case, there are three types of access control policies in this collaboration
platform:

1. Intra-organizational: Firstly, the care organizations want to constrain their own
employees. For example, the hospital imposes that each of its nurses can only

110 FEDERATED AUTHORIZATION

view data of care receivers explicitly assigned to him or her, which depends
on internal task assignment. These policies are specific to each individual
organization in the federation. As such, these policies are similar to the tenant
policies in SaaS, with the difference that these policies should now also be
enforcedwhen an employee of the hospital accesses data of another organization
in the federation through the platform.

2. Inter-organizational: Secondly, the care organizations want to control which
other organizations are allowed access to their data. For example, the hospital
trusts the meal delivery service, but not a private hospital that also uses the
platform. Again, these policies are specific to each individual organization in
the federation.

3. Cross-organizational: Thirdly, the platform itself imposes access control polices
across all organizations. For example, these policies can impose that medical
data can only be read by medical professionals that are not family members of
the related patient, unless explicitly allowed by that patient. These policies are
similar to the provider policies in SaaS, with the difference that these policies
apply to all organizations using the collaboration platform.

Access control for this collaboration platform should support all three types of policies,
for which federated authorization can play an important role.

4.6.3 The role of federated authorization

Federated authorization can play an important role in enforcing the policies mentioned
in the previous section. More precisely, the platform operates as a hub through which
all end-users access the data and the policies should therefore be enforced by the
platform. As such, the platform behaves as a remote application from the point of
view of the involved organizations, similar to a SaaS application from the point of
view of a tenant. As a result of this similarity, the collaboration platform is faced with
similar challenges for access control as SaaS.

These similar challenges are most apparent for the intra-organizational policies of each
organization. In this case, federated authorization again enables these organizations to
enforce their intra-organizational policies without sharing these or the required access
control data with the other organizations or with the platform itself. In addition,
federated authorization also enables scalable management of these policies from
the point of view of the organizations, which again is mainly a requirement for
large organizations such as a hospital. Finally, federated authorization enables these
organizations to express any preferred policy in any preferred format and employ
any preferred access control system.

VALIDATION OF FEDERATED AUTHORIZATION IN A WIDER CONTEXT 111

A difference with SaaS however is that in addition to the intra-organizational policies,
federated authorization also applies to the enforcement of the inter-organizational
and cross-organizational policies. For these policies as well, the resource data is
located in the platform, but the subject data is located in the home organization of
those subjects. As a result, federated authorization can again be applied to evaluate
(parts of) these policies at the premises of the organization of the subject, which can
maintain confidentiality of this data or can be beneficial for performance if these
policies require a lot of access control data located in the access control systems at this
organization. Federated authorization can also be applied to the inter-organizational
policies to keep the policies themselves confidential. This can be useful as it is likely
that these policies are sensitive because they reason about other organizations in the
federation.

However, as opposed to the policies of a tenant in SaaS or the intra-organizational
policies in this collaboration platform, applying federated authorization to the inter-
organizational and cross-organizational policies can also cause trust issues. The
reason for this is that the inter-organizational and cross-organizational policies are
not defined by the organization of the subject on which they are enforced. More
precisely, the inter-organizational policies of an organization are defined by this
organization, but enforced when a subject of another organization accesses its data;
the cross-organizational policies are defined by the platform itself and are enforced
when any subject access the platform. As a result, federated authorization for these
policies leads to a situation in which a policy defined by a certain organization is
evaluated by another organization. Therefore, the former organization should trust
the latter one for correct policy evaluation. If there is no trust, federated authorization
should be extended with additional techniques such as non-repudiation techniques or
logical proofs. This issue was not present for the intra-organizational policies or for
the tenant policies in SaaS because there, federated authorization is used to have an
organization evaluate its own policies.

As a side remark, notice that the inter-organizational and cross-organizational policies
also cause semantical challenges. More precisely, these policies are defined by a certain
organization and reason about the subjects of another organization. As a result,
the semantical challenge arises of how the policies of one organization can reason
about the members of other organizations while for example the meaning of the role
“nurse” can differ substantially in different organizational contexts. This challenge
has previously been the subject of research in the context of role-based access
control [108, 65], but is enlarged for the more expressive model of attribute-based
access control [150, 175, 123]. In addition, when reasoning about other organizations
as a whole, the cross-organizational policies require policy mechanisms that make
abstraction of specific members of the federation such as higher-level federation roles
such as “home care provider”, “caterer” or “hospital” because realistic federations can
be large and members can join and leave frequently. Both these semantical challenges

112 FEDERATED AUTHORIZATION

are essential for access control in complex federations such as this collaborative care
platform, but they are not specific for the technique of federated authorization.

In summary, federated authorization provides benefits onmultiple levels. Semantically,
it can facilitate enabling each organization to express policies in terms of its own
organizational structure. Technically, federated authorization enables to evaluate
a policy distributedly across organizational boundaries using any preferred system.
In addition, federated authorization can be applied to improve performance of this
distributed policy evaluation if the policy requires a lot of access control data located
in a certain organization. In terms of trust, federated authorization enables the
enforcement of policies without having to disclose them or the access control data
they require. And finally, in terms of management, federated authorization enables
the centralization of policy management. Although federated authorization does not
address all of these challenges completely by itself, all of this does lead us to believe
that federated authorization is a necessary building block for future federated access
control in which data locality and inter-organizational trust relations dictate policy
evaluation.

4.7 Outlook

In this chapter, we discussed the technique of federated authorization. We
first discussed this technique in the context of SaaS and afterwards validated its
applicability in the wider scope of inter-organizational collaborative applications. As
we discussed, this technique has multiple potential benefits, such as lowering the
required trust in the provider of a remote application and enabling scalable centralized
access control management. This leads us to believe that federated authorization is a
necessary building block for future federated access control.

In general, federated authorization fits into a technology domain referred to as Identity
and Access Management or IAM. This domain mainly focuses on scalable and efficient
access control management, a challenge that grows in importance as more and more
information is digitized while companies grow in size and complexity.

The approach of externalizing authorization from an application (but not necessarily
to another organization) can play an important role in the field of IAM, in the first
place by enabling the centralization of the access management of an organization. By
also representing the access rules as declarative policies, this approach additionally
facilitates policy consistency, policy audits and policy reuse (as also discussed by
Hulsebosch et al. [175]). In short, this approach enables a better overview of the
overall access management of an organization.

Federated authorization instantiates this externalized authorization for the remote

OUTLOOK 113

applications used by an organization. Towards the future, federated authorization
even enables the creation of third-party authorization services that centralize the
access management for an organization and relieve it from the management of the
required infrastructure, an evolution called security as a service [187] or access control
as a service [107]. The Kantara project called User-Managed Access (UMA, [23]) aims
to achieve this for individual web users in order to improve their control over their
web data based on OAuth.

However, we still see several challenges that have to be addressed in order to
achieve wide-spread adoption of federated authorization in practice. Firstly, federated
authorization requires standardization to easily employ it for multiple remote
applications and to support dynamic and large-scale federations. More precisely,
the large-scale adoption of federated authorization requires standardization of the
interfaces and protocols between the involved parties. Initial steps in this direction
are currently being made, e.g., by the OpenLiberty project called OpenAz [24].

Secondly, the performance of federated authorization has to be further improved. The
reason for this is that authorization should be enforced on every action that a subject
performs in an application. As such, if federated authorization is applied as described
in the generic architecture, its overhead affects the end-user latency of every action in
the application. In this regard, the OAuth protocol can be regarded as a simplified form
of federated authorization that pragmatically opts for evaluating a coarse-grained
policy once and caching the decision afterwards. This avoids the overhead for future
requests of the same subject, but does not support fine-grained decisions for each
individual action and increases the time to react to permission changes. In addition,
our performance evaluation of the generic architecture shows that a large part of the
policy evaluation time is spent on fetching attributes for fine-grained rules. Because
of this, practical instances of federated authorization such as most OAuth instances
opt for sharing a fixed set of attributes, which improves performance but restricts
the expressivity of the involved policies. Towards the future, additional performance
tactics are required in order to improve the capabilities of practical deployments of
federated authorization.

Finally, the most fundamental challenge for successfully applying federated autho-
rization in practice is that it builds on externalizing authorization from an application,
which is still a challenge by itself in the first place. The reason for this is that compared
to authentication, authorization is more tightly coupled with the application, both
technically and semantically. Technically, authorization should be enforced on every
action performed by a subject in the application. As a result, authorization interacts
with multiple parts of the application code, which makes it non-trivial to modularize.
Semantically, a policy author still has to be able to reason about the application
on which the policy is enforced, e.g., the author has to know which resources are
available, which attributes they provide and which actions they support. This makes
it non-trivial to define a correct externalized access control policy, which lowers the

114 FEDERATED AUTHORIZATION

benefits of externalized authorization and federated authorization. This challenge also
explains why most instances of federated authorization in practice employ a limited
or domain-specific access control model. We see this challenge as a major challenge
for policy-based access control in general. Though this is not the main focus of this
work, we further discuss our vision on addressing it in Chapter 7.

4.8 Conclusion

This chapter investigated the concept of federated authorization. Federated
authorization externalizes authorization from a remote application such as a SaaS
application. Federated authorization thereby, amongst others, enables to enforce a
policy on an application without disclosing the policy or the access control data that it
requires and enables to centralize the access management of an organization. In this
chapter, we illustrated the need for this technique in the context of SaaS, described a
generic attribute-based middleware architecture, evaluated the performance of this
middleware based on a prototype, validated the potential of federated authorization
outside the scope of SaaS and discussed the practical applicability of this technique.
Although this chapter mainly focused on two e-health case studies, our interactions
with industry partners have confirmed the need for federated authorization in other
domains that rely on inter-organizational collaboration, such as electronic document
processing [16] (the eDocs case study) and payment services [17]. As such, our
experiences lead us to believe that federated authorization is a necessary building
block for future federated access control.

However, while the concept of federated authorization is fairly intuitive, its realization
still poses many challenges. As a result, federated authorization does not show a large
adoption in practice yet. One of these challenges is the difficulty of externalizing
authorization from an application and supporting fine-grained policies in the first
place. As we regard this challenge as crucial to policy-based access control as a whole,
we further discuss it in Chapter 7. A second challenge is the negative performance
impact of federated authorization. With regard to this, we present the performance
tactic of policy federation in the next chapter.

Chapter 5

Efficient federated evaluation
of access control policies

This chapter presents our third contribution: the technique of policy federation.
Following up on the previous chapter, policy federation optimizes the performance of
federated authorization. Policy federation achieves this by automatically decomposing
the tenant policies so that the resulting parts can be evaluated near the data they
require as much as possible while keeping the sensitive access control data and policies
of the tenant at its premises. While we primarily present this technique in the context
of federated authorization, it can effectively be applied to any policy evaluation system
in which the data required to evaluate a policy is spread across multiple locations,
such as the multi-tier policy decision point of Amusa.

This chapter stems from both the goal of lowering the management overhead for
tenants as well as from the goal of limiting the disclosure of sensitive tenant access
control data and rules. In addition, this chapter focuses specifically on performance.
As such, this chapter focuses on the challenges from outsourcing and the concern of
low performance overhead (see Section 1.2). This chapter is mainly motivated by the
case study of home patient monitoring and is based on our publications at MW4NG
2012 [84] and in the Journal of Internet Services and Applications [85].

5.1 Introduction

The previous chapter investigated the concept of federated authorization. Federated
authorization externalizes policy evaluation from a SaaS application so that it can

115

116 EFFICIENT FEDERATED EVALUATION OF ACCESS CONTROL POLICIES

be performed at the premises of the tenant. This enables a tenant to centralize its
access management and at the same time enables it to enforce a policy on a SaaS
application without disclosing this policy nor the access control data that it requires.
In addition, federated authorization can be beneficial for performance if the involved
policies mostly require data located at the tenant because it brings policy evaluation
to this data instead of the other way around.

In most cases however, the policies of the tenant also reason about the resources
in the SaaS application and therefore also require data located at the SaaS provider.
As a result, completely evaluating the policies of the tenant at the premises of this
tenant leads to sub-optimal performance by having to fetch this data. Similarly,
completely evaluating the policies of the tenant at the premises of the provider leads
to sub-optimal performance by having to fetch the subject data, in addition to the
disadvantage of the tenant having to disclose this data.

To further improve the performance of federated authorization, we introduce a
technique called policy federation. In the process of policy federation, the policies of a
tenant are decomposed and distributed over the tenant and the provider so that the
resulting parts are evaluated near the data they require as much as possible while
keeping sensitive tenant data and access rules local to the tenant premises.

This chapter provides a policy federation algorithm for attribute-based tree-structured
policies similar to XACML, describes the required supporting middleware and
evaluates the impact of policy federation on performance based on the policies of a
hospital in the case study of the home patient monitoring application and a prototype
of the middleware. As this chapter shows, policy federation effectively succeeds in
keeping the sensitive tenant data confidential and at the same time improves policy
evaluation time in most cases.

While we here describe and evaluate policy federation for the federated set-up
between a tenant and a SaaS provider, this technique can effectively be applied
to any policy evaluation system in which the data required to evaluate a policy is
spread across multiple locations. As such, the work in this chapter could also be used
to automatically and optimally deploy the Amusa policy tree across its multi-tier
policy evaluation engine (see Chapter 3).

The rest of this chapter is structured as follows. Section 5.2 zooms in on the case study
of the patient monitoring application and presents an extensive policy from this case
study to be used in the rest of this chapter. Section 5.3 defines the attribute-based
policy model and Section 5.4 the policy federation algorithm. Section 5.5 evaluates
policy federation in terms of performance and thereby elaborates on the design
of supporting middleware. Section 5.6 provides a discussion of policy federation.
Section 5.7 covers related work and Section 5.8 concludes this chapter.

CASE STUDY ANALYSIS: HOME PATIENT MONITORING 117

5.2 Case study analysis: home patient monitoring

This chapter builds upon the same case study as the previous chapter, i.e., an
application for monitoring patients of cardiovascular diseases at their homes, provided
to hospitals as a service. For a full description of this case study, we refer to
Section 4.2.1; in this section, we only provide a summary of the case study and
then zoom in on the policies of a hospital in this case study for use throughout this
chapter.

5.2.1 Summary of the case study

Again we refer to Section 4.2.1 for a full description of the patient monitoring
application. To summarize here, the application in this case study monitors patients
of cardiovascular diseases after leaving the hospital. The application employs the
measurements to provide a status overview of a patient to the physicians and nurses at
his or her hospital. In addition, the designated physician of a patient is also notified in
case of important evolutions. In addition, the application provides functionality such
as patient questionnaires and shared notes on a patient overview. In this application,
the hospitals are the tenants and they each manage multiple end-users, i.e., the
patients, physicians and nurses. Next to the monitoring application, the hospitals also
employ other SaaS applications, e.g., for medical imaging, and on-premise applications,
e.g., for patient records or employee management. As for all e-health applications,
security is paramount for the patient monitoring application and of these security
requirements, this chapter focuses on the sub-domain of access control.

5.2.2 Access control policies from the case study

The hospital’s access control policies that apply to the monitoring application provide
a good example of policies that apply to current SaaS applications. This section first
discusses the general structure of the hospital policies and then provides a part of
these policies in detail.

Structure of the hospital’s policies

Similar to the previous chapters, this work builds upon attribute-based access control,
which structures policies by making the distinction between the subject, the resource,
the action and the environment. We apply the same structure in this discussion.

118 EFFICIENT FEDERATED EVALUATION OF ACCESS CONTROL POLICIES

Resources and actions. The resources of the hospital’s policies and the actions they
support are determined by the structure of the data in the monitoring application. The
previous section mentioned five types of application data: (1) the raw measurements,
(2) the overview of the patient’s status, (3) the notifications sent to physicians, (4) the
notes added to a patient’s status overview and (5) the patient questionnaires. The
actions on these resources are as follows: The raw measurements, the patient’s status
overview and the notifications are all created by the application and cannot be altered;
end-users can only view them. Notes on the other hand can be created, viewed,
updated and deleted. Patient questionnaires can be created and assigned to patients
by physicians. Patients can view and fill in open patient questionnaires and both
patients and physicians can view completed patient questionnaires.
Next to the five types of application data, the hospital can also constrain access to the
monitoring application as a whole.

Subjects. The subjects of the hospital’s policies are determined by the structure
of the hospital. The hospital consists of multiple medical departments, such as
cardiology, oncology, elder care, general medicine and the emergency department.
Each department employs nurses and specialist physicians, such as cardiologists,
oncologists, surgeons and anesthetists. The general medicine department also employs
a number of general practitioners. Inside a department, the personnel is structured
in teams, for example, consisting of multiple cardiologists, a head cardiologist and
assisting nurses. Finally, the hospital also provides a number of supporting services,
such as general administration and finances.

Environment. The environment of the hospital’s policies provides the current time
and date.

Detailed policies

Following the general structure of the hospital’s policies, this section illustrates one
of these in detail by zooming in on the access rules for viewing the status overview
of a patient. Of all the actions, this action can be executed by the most types of
subjects, leading to the most extensive access rules in the case study. Other actions
are constrained by similar rules.

We start from broad organization-wide access rules and end with specific rules for
specific kinds of subjects. Notice that while we try to be as specific as possible, the
textual format is still informal and a translation step towards a more formal policy

CASE STUDY ANALYSIS: HOME PATIENT MONITORING 119

language is necessary to remove all ambiguities. We provide the XACML encoding of
these policies on-line1.

Organization-wide access rules. The following organization-wide access rules of
the hospital also apply to the monitoring application:

R1. A member of the medical personnel can not access any data about a patient who
has explicitly withdrawn consent for him or her, except in case of emergency.

Access rules about the monitoring application as a whole. The following access
rules of the hospital apply to the monitoring application as a whole:

R2. Only physicians, nurses and patients can access the monitoring application.

R3. Of the physicians, only general practitioners, physicians of the cardiology
department, physicians of the elder care department and physicians of the
emergency department can access the monitoring application.

R4. Of the nurses, only nurses of the cardiology and the elder care department can
access the monitoring application.

R5. Nurses can only access the monitoring application during their shifts.

R6. Nurses can only access the monitoring application from the hospital.

R7. Of the nurses of the cardiology department, all nurses can access the monitoring
application.

R8. Of the nurses of the elder care department, only nurses who have explicitly
been allowed to use the monitoring application can access the monitoring
application.

Access rules about viewing the status of a patient. The following access rules of
the hospital specifically apply to viewing the status of a patient:

R9. Physicians of the cardiology department, physicians of the elder care depart-
ment and physicians of the emergency department can always view a patient’s
status in case of emergency, which is either triggered by the physician, triggered
by a telemedicine operator or indicated by the monitoring data.

1http://people.cs.kuleuven.be/~maarten.decat/jisa2013/

120 EFFICIENT FEDERATED EVALUATION OF ACCESS CONTROL POLICIES

R10. General practitioners can only view the status of a patient who is currently on
consultation or whom they treated in the last two months or for whom they
are assigned the primary general practitioner at the hospital or for whom they
are assigned responsible in the monitoring application.

R11. Head physicians of the cardiology department can view the status of any patient
in the monitoring application.

R12. Standard physicians of the cardiology department can only view the status of
any patient treated by themselves or by a physician in their team.

R13. Physicians of the elder care department can only view the status of a patient
who is currently admitted to their care unit or whom they have treated in the
last six months.

R14. Physicians of the emergency department can only view the status of a patient
in case the status of that patient is bad.

R15. Nurses can only view a patient’s status of the last 5 days.

R16. Nurses of the cardiology department can only view the status of a patient who
is admitted to their nurse unit and for whom they are assigned responsible, and
only up to three days after they were discharged.

R17. Nurses of the elder care department can only view the status of a patient
who is currently admitted to their nurse unit and for whom they are assigned
responsible.

R18. A patient can only access the monitoring application if (still) explicitly allowed
by the hospital.

R19. A patient can only view his own status.

Analysis

In terms of attribute-based access control, these 19 access rules require 30 different
attributes in total, such as the subject id, the department of the subject, the list of
patients treated by a physician, the owner of a resource, the current date etc. We
provide an extensive overview of the required attributes of these policies on-line1, but
in summary, 19 of these attributes are hosted by the hospital (e.g., the list of patients
treated by a physician), 7 are hosted by the provider (e.g., the owner of a resource)
and 4 are shared in the policy evaluation process (e.g., the id of the subject making the
request). Of the 19 tenant attributes, 8 are sensitive, such as the lists of patients. The
number of attributes required to reach a decision for a single request ranges from 4
to 13 with a mean of 7.65. In summary, this case study illustrates that the policies of a

CASE STUDY ANALYSIS: HOME PATIENT MONITORING 121

tenant for a SaaS application require attributes from both the tenant and the provider.
This leads to sub-optimal performance, which is the focus of this work.

5.2.3 Problem statement and solution

As discussed in the previous chapter, the hospital’s access control policies would
be evaluated by the provider in traditional SaaS applications. This has multiple
disadvantages and most importantly for this chapter, it forces the hospital to disclose
all required attributes for evaluating its policies to the provider. These attributes
include sensitive attributes that the hospital does not want to disclose for reasons of
limited trust or even cannot share by law.

A solution to this problem is to have the hospital evaluate its policies itself, at its own
premises. To achieve this, we investigated the technique of federated authorization in
the previous chapter. Because 19 of the 30 different attributes required by the hospital
policies are hosted by the hospital itself, this approach can also improve performance
as it effectively brings policy evaluation to the data that it requires instead of the
other way around. However, the policies of the tenant also reason about the resources
in the SaaS application and therefore require data located at the SaaS provider. As a
result, completely evaluating the policies of the tenant at the premises of this tenant
leads to sub-optimal performance by having to fetch this data.

In this chapter we introduce the technique of policy federation, which aims to further
improve the performance of federated authorization. More precisely, the process of
policy federation decomposes and distributes the hospital’s policies over the SaaS
provider and the hospital based on the location and sensitivity of the attributes and
parts of the policies. The goal of this process is to evaluate every part of the policies
near the data it requires as much as possible while still keeping sensitive tenant
policies or attributes confidential. For example, if the hospital evaluates whether a
user has treated the owner of the status overview in the last two months (R10), this
data remains confidential. Similarly, if the hospital evaluates whether a user is a
general practitioner (R3), this data does not have to be fetched by the provider and
if the provider evaluates whether the monitoring data indicates an emergency (R9),
this data does not have to be fetched by the tenant.

The complete solution presented in this chapter consists of three parts: (i) an attribute-
based policy model which allows us to reason about policy federation, (ii) the actual
policy federation algorithm and (iii) a description, prototype and evaluation of
supporting middleware. In the next sections, we discuss each of these.

122 EFFICIENT FEDERATED EVALUATION OF ACCESS CONTROL POLICIES

5.3 Policy model

This section defines a simple policy model that enables us to reason about policy
federation. For similar reasons as the previous chapters, this chapter builds upon
attribute-based access control and we employ policy trees similar to XACML (see
Section 2.3.1). More precisely, the policy model employed in this chapter encompasses
the core features of XACML, although we do not take obligations into account in this
chapter. This minimal subset therefore resembles the features of the STAPL policy
language and supports all the policies of the case study, but remains generic in order to
guarantee its wide applicability. Several other authors have taken similar approaches,
e.g., Crampton and Huth [74]. With respect to these, the model presented in this
work focuses on the aspects related to policy federation, i.e., the general structure of
a policy tree and how a policy tree is evaluated.

5.3.1 Structure of a policy tree

The policy model used in this work represents policies using the concept of a policy
tree. Similar to STAPL, the leafs of the policy tree are called Rules, the intermediary
nodes are called Policies. To avoid confusion with the general terms “rules” and
“policies”, we use capitals to denote the elements of a policy tree.

Rules. Rules state in which conditions a certain request is permitted and in which
it is denied. They therefore consist of an effect and a condition. The effect of a Rule is
either Permit or Deny, respectively permitting or denying the request. The condition
determines whether the effect holds or not: if the condition evaluates to true, the
result of the Rule is its effect; if the condition evaluates to false, the result of the
Rule is NotApplicable. Thus, the result of evaluating a Rule is either Permit, Deny or
NotApplicable.

Because this work builds upon ABAC the conditions are expressions on the attributes
of the subject (s), the resource (r), the action (a) and the environment (e). Such
expressions can contain three kinds of elements: (i) functions, e.g., “and”, “in” or
“==”, (ii) attribute references, e.g., “s.roles” referring to the roles of the subject and
(iii) literal values, e.g., “physician”. Possible attribute types are primitive types such
as integers, strings, booleans and dates, or lists of these. The top-level function of a
condition should result into a boolean, but expressions can internally also contain
other types of functions, such as numeric additions or string concatenation.

Using the notationRule=<Effect, Condition>, access ruleR2 as defined in Section 5.2.2
can be represented as follows:

POLICY MODEL 123

R2 = <Deny, “physician” not in s.roles & “nurse” not in s.roles & “patients” not in
s.roles >

Policies. Policies combine the results of several children, either Rules or other
Policies. They therefore consist of an ordered list of children, a combination algorithm
and a target. The combination algorithm combines the results of the children into the
result of the Policy. In this work, we limit ourselves to three combination algorithms
that are present in XACML and suffice to express the policies from the case study:
PermitOverrides, DenyOverrides and FirstApplicable. Appendix C explains the
behavior of these algorithms in detail. The target is an attribute-based expression that
determines whether the Policy and its children apply to the request or not. As such,
if the target evaluates to true, the children of the Policy are evaluated and the result
of the Policy is determined by the combination of the results of these children; if the
target evaluates to false, the children are not evaluated and the result of the Policy
is NotApplicable.

Notice that policy evaluation in general requires a single result, i.e., the access control
decision. Since every set of policies can be combined to a single combined policy
tree using the combination algorithms, we assume the policy tree to have a single
root, which applies to all requests. For simplicity, we also assume the top element of
a policy tree to be a Policy, i.e., not a Rule.

Using the notation Policy = <Target, CombinationAlgorithm, Children>, the example
rules of Section 5.2.2 can be combined into a single policy tree as follows (illustrated
in Figure 5.1):

P0 = <true, FirstApplicable, [R1, R2, <“physician” in s.roles, DenyOverrides, [R3, R9,
…, R14]>, <“nurse” in s.roles, DenyOverrides, [R4, …]>, …>

Sensitive elements. In the model, two elements of a policy tree can be declared
sensitive: (i) the attributes used in a Rule or Policy and (ii) the Rules or Policies
themselves. For Policies, sensitivity applies to the whole policy tree below it. In
practice, these sensitivity labels can either be expressed by providing a separate
meta-policy or by annotating the access control policies themselves. Since attributes
can be referencedmultiple times throughout a policy tree, using a separate meta-policy
provides the advantage of central management. Elements of a policy tree on the other
hand are best annotated in the access control policies themselves. The result for the
policies of the case study is available on-line1.

124 EFFICIENT FEDERATED EVALUATION OF ACCESS CONTROL POLICIES

Figure 5.1: Representation of the example policies of Section 5.2.2 as a policy tree
using our policy model. The intermediate policies bundle the rules for a certain type
of subjects, e.g., PPh contains the rules that apply to physicians, PCa those that apply
to physicians of the cardiology department and PNEl those that apply to nurses of
the elder care department.

5.3.2 Evaluation of a policy tree

How a policy tree is evaluated also affects policy federation. We here define two
aspects: (i) the order in which the elements of the tree are evaluated and (ii) how
attributes are fetched.

Evaluation order. A Rule is evaluated by simply evaluating its condition. A Policy
on the other hand is evaluated by first evaluating its target. If the Policy does not
apply to the request, NotApplicable is returned. If the Policy does apply, its children
are evaluated in the given order and their results are combined into the result of
the Policy. As a consequence of evaluating the children in order, the policy tree
is evaluated depth-first. For now, we assume that all children and expressions are
evaluated sequentially.

Fetching attributes. During the evaluation of a policy tree, the required attributes
are fetched from their respective Policy Information Points (see the reference
architecture for policy-based access control systems discussed in Section 2.3.2).
Because the required attributes for evaluating a part of a policy tree depend on
the values of former attributes, it is generally impossible to determine the set of
required attributes up-front and we assume that an attribute is only fetched when it
is required. To enable this, the identifiers of the subject and the resource are given
by the Policy Enforcement Point for initiating the policy evaluation. We also make
the realistic assumption that attribute values are cached during the evaluation of a
policy tree for a single request. This caching avoids unnecessary attribute fetches and

POLICY FEDERATION ALGORITHM 125

is required to guarantee correct evaluation of policies that require the same attribute
multiple times in the presence of out-of-band attribute updates. We do not take into
account attribute caching across multiple requests in order to avoid freshness issues.

5.4 Policy federation algorithm

Based on the policy model described in the previous section, this section defines the
policy federation algorithm, i.e., the algorithm that will decompose and deploy the
tenant policies across tenant and provider. We first give an overview of the algorithm
and then go into each of the major steps. Finally, we discuss the correctness of the
algorithm in terms of policy equivalence.

5.4.1 Overview

The goal of the policy federation algorithm is to decompose and distribute the tenant
policies so that sensitive attributes and policies remain confidential and the evaluation
performance is optimized, i.e., the evaluation duration is minimized. For attribute-
based policies, this evaluation duration is mainly determined by the latency of fetching
the required attributes [87]. The latency of a remote attribute fetch between tenant
and provider is of an order of magnitude larger than a local database call, taking
into account the complex data flows in federated applications and the geographical
distance between tenant and provider. Therefore, the goal of the algorithm is to
minimize the number of requests required between the tenant and the provider to
reach an access decision.

An important design decision is the granularity of the policy distribution. In theory,
even the individual clauses in the expression of a target or a condition could be
distributed. However, we deliberately limit the granularity to complete Rules or
Policies in the policy tree. As such, the decomposed policy tree remains compatible
with existing policy systems and the existing combination algorithms can be used
for handling the results. However, this approach also limits the granularity of policy
decomposition. Therefore, the first step in the algorithm is to normalize larger Rules
and Policies into an equivalent set of smaller Rules and Policies that can then be
separately deployed. Afterward, the algorithm tries to recombine multiple remote
policy references into a single reference in order to minimize the number of remote
policy evaluation requests.

An overview of the resulting policy federation algorithm is given in Algorithm 1. The
algorithm requires two inputs: (i) the policy tree P to be federated, annotated with
sensitivity labels in the tree and (ii) the list of attributes, each having a location and

126 EFFICIENT FEDERATED EVALUATION OF ACCESS CONTROL POLICIES

Algorithm 1 Overview of the policy federation algorithm. The methods
normalize(), decompose() and combine() are defined in Algorithms 2, 3 and 4.
AbstractPolicy is a type that represents an abstract element in the policy tree, i.e., a
Rule or a Policy.
Inputs: P : a policy tree, annotated with sensitivity labels (true or false), A: a list of
attributes, each having a location (tenant-side or provider-side) and sensitivity label
(true or false).

Outputs: root: the sub-tree at the root of the new policy tree that is deployed
provider-side and can reference tenant-side policies, SP : the set of referenced sub-
trees to be deployed provider-side, ST : the set of referenced sub-trees to be deployed
tenant-side.

SP , ST = []
// Step 1: Normalization
P = normalize(P)
// Step 2: Decomposition
root = decompose(P , “providerSide”)
// Step 3: Combination
root = combine(root)
for AbstractPolicy p in ST : ST .replace(p, combine(p))
for AbstractPolicy p in SP : SP .replace(p, combine(p))

sensitivity label. The location of an attribute is either tenant-side or provider-side; the
sensitivity label of an attribute, Policy or Rule is a boolean that determines whether
the attribute, Policy or Rule can be shared with the provider or not. The algorithm
provides three outputs: (i) root: the sub-tree at the root of the new policy tree which is
deployed provider-side can reference tenant-side policies, (ii) SP : the set of referenced
sub-trees to be deployed provider-side and (iii) ST : the set of referenced sub-trees to
be deployed tenant-side. As we will see, several policy transformations are applied to
the policy tree throughout the algorithm. Figure 5.2 lists these transformations and
Appendix C proves their correctness by means of truth tables.

As shown in Algorithm 1, the algorithm consists of three major steps: normalization,
decomposition and combination. In the next sections, we go into detail about each of
these steps.

5.4.2 Step 1: Normalization

The goal of the normalization step is to convert larger policies into an equivalent
set of smaller policies, which can then be separately deployed. Therefore, the first

POLICY FEDERATION ALGORITHM 127

<
T
1
|T

2
,C

A
,[
P
1
..
.P

n
]
>

⇔
<

tr
u
e,
F
ir
st
A
p
p
li
ca
bl
e,
[<

T
1
,C

A
,[
P
1
..
.P

n
]
>
,<

T
2
,C

A
,[
P
1
..
.P

n
]
>
]
>

(T
1)

<
P
er
m
it
,C

1
|C

2
>

⇔
<

tr
u
e,
P
er
m
it
O
v
er
ri
d
es
,[
<

P
er
m
it
,C

1
>
,<

P
er
m
it
,C

2
>
]
>

(T
2)

<
D
en

y
,C

1
|C

2
>

⇔
<

tr
u
e,
D
en

y
O
v
er
ri
d
es
,[
<

D
en

y
,C

1
>
,<

D
en

y
,C

2
>
]
>

(T
3)

<
T
,P

er
m
it
O
v
er
ri
d
es
,[
P
1
,P

2
,P

3
]
>

⇔
<

T
,P

er
m
it
O
v
er
ri
d
es
,[
<

tr
u
e,
P
er
m
it
O
v
er
ri
d
es
,[
P
1
,P

2
]
>
,P

3
]
>

(T
4)

<
T
,D

en
y
O
v
er
ri
d
es
,[
P
1
,P

2
,P

3
]
>

⇔
<

T
,D

en
y
O
v
er
ri
d
es
,[
<

tr
u
e,
D
en

y
O
v
er
ri
d
es
,[
P
1
,P

2
]
>
,P

3
]
>

(T
5)

<
T
,F

ir
st
A
p
p
li
ca
bl
e,
[P

1
,P

2
,P

3
]
>

⇔
<

T
,F

ir
st
A
p
p
li
ca
bl
e,
[<

tr
u
e,
F
ir
st
A
p
p
li
ca
bl
e,
[P

1
,P

2
]
>
,P

3
]
>

(T
6)

<
T
,P

er
m
it
O
v
er
ri
d
es
,[
P
1
,P

2
]
>

⇔
<

T
,P

er
m
it
O
v
er
ri
d
es
,[
P
2
,P

1
]
>

(T
7)

<
T
,D

en
y
O
v
er
ri
d
es
,[
P
1
,P

2
]
>

⇔
<

T
,D

en
y
O
v
er
ri
d
es
,[
P
2
,P

1
]
>

(T
8)

Fi
gu

re
5.
2:

Po
lic

y
tr
an

sf
or

m
at
io
ns

us
ed

in
th
e
po

lic
y
fe
de

ra
tio

n
al
go

rit
hm

.T
1,

T2
an

d
T3

al
lo
w

Po
lic

ie
sa

nd
Ru

le
st

o
be

sp
lit

in
an

eq
ui
va

le
nt

se
to

fs
m
al
le
re

le
m
en

ts
an

d
vi
ce

ve
rs
a;

T4
,T

5
an

d
T6

al
lo
w

Po
lic

ie
sw

ith
m
or
e
th
an

tw
o
ch

ild
re
n
to

be
ex

pa
nd

ed
in
to

bi
na

ry
tr
ee

so
rv

ic
e
ve

rs
a;

T7
an

d
T8

sh
ow

th
e
co

m
m
ut
at
iv
ity

of
Pe

rm
itO

ve
rr
id
es

an
d
D
en

yO
ve

rr
id
es
.A

pp
en

di
x
C

pr
ov

es
th
e
co

rr
ec

tn
es
so

ft
he

se
tr
an

sf
or

m
at
io
ns

by
m
ea

ns
of

th
ei
rt

ru
th

ta
bl
es
.W

hi
le

th
es
e
tr
an

sf
or

m
at
io
ns

ar
e
he

re
sh

ow
n
fo
r2

or
3

el
em

en
ts
,e

ac
h
ca

n
be

ge
ne

ra
liz

ed
to

N
el
em

en
ts
.

128 EFFICIENT FEDERATED EVALUATION OF ACCESS CONTROL POLICIES

step of the federation algorithm iteratively applies transformations T1, T2 and T3 of
Figure 5.2 to the top of the given policy tree until no more children can be transformed,
as shown in Algorithm 2.

Notice that transformations T1 to T3 only utilize or statements. The reason for this
is that we want to remain compatible to XACML and only employ FirstApplicable,
PermitOverrides and DenyOverrides, while converting an and statement would
require other combination algorithms. For example, the equivalent of T1 for an and
statement would require the combination algorithm BothApplicable.

Algorithm 2 Definition of the normalize() method. AbstractPolicy is a type that
represents an abstract element in the policy tree, i.e., a Rule or a Policy.
def normalize(AbstractPolicy p):

AbstractPolicy p’ = p.applyTransformations([T1, T2, T3])
if p’ != p:
// a transformation was applied
return normalize(p’)

else:
if p is Rule:

return p
else: // Policy

for Child child in p.children:
p.children.replace(child, normalize(child))

return p

Results from the case study. When applying the federation algorithm to the policy
tree from the case study (see Figure 5.1), the algorithm will only apply T2. The reason
for this is that the targets of the Policies in the tree only consist of exactly 1 element,
e.g., “physician” in s.roles or s.department == “elder care” and rules are formulated as
positive rules, i.e., permitting rules instead of denying ones. As an example, R12 is
split into two parts using T2:

<Permit, o.owner_id in s.treated | o.owner in s.treated_by_team>
mT2

<true, PermitOverrides, [<Permit, o.owner_id in s.treated>, <Permit, o.owner_id in
s.treated_by_team>]>

Similarly, R9 is split into three times three parts because of the disjunctive normal
form of two conjunctives with each three elements, R10 is split in four parts and R13

in two parts. In total, the policy tree of Figure 5.1 is transformed in the policy tree of
Figure 5.3.

POLICY FEDERATION ALGORITHM 129

Fi
gu

re
5.
3:

Th
e
re
su

lt
of

no
rm

al
iz
in
g
P
0
ill
us

tr
at
ed

in
Fi
gu

re
5.
1.

130 EFFICIENT FEDERATED EVALUATION OF ACCESS CONTROL POLICIES

Algorithm 3 Definition of the decompose() method. Ci,P , Ci,T and CPR are as
defined in Section 5.4, ST and SP are as defined in Algorithm 1. AbstractPolicy is a
type that represents an abstract element in the policy tree, i.e., a Rule or a Policy.
def decompose(AbstractPolicy p, Side parentSide):
if p is Policy:
for AbstractPolicy child in p.children:

p.children.replace(child, decompose(child))
(Ci,P , Ci,T) = evaluationCost(p)
if parentSide == “tenantSide”:
if Ci,P + CPR < Ci,T :

SP .add(p)
return new RemotePolicyReference(p)

else:
return p

else:
if Ci,T + CPR < Ci,P :

ST .add(p)
return new RemotePolicyReference(p)

else:
return p

5.4.3 Step 2: Decomposition

After the policy tree has been normalized, step 2 of the algorithm decomposes it
so that every sub-tree is deployed on its optimal location (see Algorithm 3). The
algorithm estimates the cost of evaluating a certain sub-tree either provider-side or
tenant-side in terms of evaluation time and minimizes the total evaluation cost as
follows: If the cost of evaluating a child of a Policy on the same side as the Policy is
larger than the cost of evaluating it on the other side plus the cost of making a remote
policy evaluation request, the child is deployed on the other side and it is replaced by a
remote policy reference to it. The algorithm applies this reasoning recursively starting
from the top of the policy tree, which should always be deployed provider-side. For a
Policy or Rule that handles sensitive attributes or is labeled sensitive itself, the cost
of evaluating it provider-side is infinite, i.e., it has to be evaluated tenant-side. For
the other cases, we here define several cost functions, which focus on the number of
required attributes.

Cost functions for Rules. For Rules in the policy tree, the cost functions are as
follows:

POLICY FEDERATION ALGORITHM 131

CRule,P = NA,P ∗ CL +NA,T ∗ CR (CF1)

CRule,T = NA,T ∗ CL +NA,P ∗ CR (CF2)

The cost functions determine the cost of the provider (CRule,P) and the tenant
(CRule,T) evaluating a certain Rule based on the total number of required provider
attributes (NA,P) and tenant attributes (NA,T) and the cost for fetching an attribute
locally (CL) or remotely (CR). The location of every attribute determines the cost of
fetching the attribute: CL will be much less than CR.

An important detail is the handling of cached attributes (see Section 5.3.2). The cost
of fetching an attribute from the cache is assumed to be zero and the cost functions
should only take into account newly required attributes. However, it is impossible to
fully statically determine the set of cached attributes, for example because previous
elements in the policy tree can be fully evaluated, but still return NotApplicable. In
order to come to a static estimation, we assume the worst case and calculate the
minimal set of cached attributes by only taking into account the attributes required
by the conditions of previously evaluated Rules and targets of previously evaluated
Policies. For these, we take into account super-Policies, previous Rules and Policies
on the same level and previous Rules and Policies on the same level as super-Policies.
In case a Policy has a target that matches all requests, the required attributes of the
first child are taken into account as well. For simplicity, we assume that non-sensitive
cached attributes are shared between tenant and provider by adding them to the
policy evaluation requests.

Notice that the cost functions above also assume the worst case by taking into account
all attributes of a Rule or Policy, while some attributes may not be needed every time,
e.g., the attributes required by the second clause in a conjunction when the first clause
returns false.

Cost functions for Policies. For the Policies in a policy tree, the cost functions are
as follows:

CPolicy,P = NA,P ∗ CL +NA,T ∗ CR +
∑

Ki,P (CF3)

CPolicy,T = NA,T ∗ CL +NA,P ∗ CR +
∑

Ki,T (CF4)

NA,P , NA,T , CL and CR are defined similarly as for Rules. Policies however only
directly require attributes because of their targets and again, cached attributes are
not taken into account. Ki,P and Ki,T represent the cost of evaluating the i’th child
Childi of Policy P in case P is evaluated provider-side or tenant-side respectively.
In case Childi is evaluated on the other side than P , a policy evaluation request is

132 EFFICIENT FEDERATED EVALUATION OF ACCESS CONTROL POLICIES

needed, which has a cost CPR ' CR. To take this into account, we defineKi,P as the
minimum of the cost of evaluating Childi when evaluating P provider-side, thereby
actually deciding on the optimal evaluation location of Childi:

Ki,P = min(Ci,P , Ci,T + CPR) (CF5)

Ki,T is defined similarly:

Ki,T = min(Ci,P + CPR, Ci,T) (CF6)

In summary, Ci,P and Ci,T are defined as CF1 and CF2 for Rules; for Policies, Ci,P

and Ci,T are defined recursively as CF3 or CF4.

Results from the case study. The elements of P0 all require more tenant attributes
than provider attributes, except for the sub-tree resulting from normalizing R9. As
a result, most of the policy tree will be deployed tenant-side, starting from the root
and only the sub-tree resulting from normalizing R9 is still deployed provider-side.
Because the root Policy P0 is deployed tenant-side, a provider-side policy reference is
inserted as the new root. In total, the policy tree of Figure 5.3 is transformed in the
policy tree of Figure 5.4.

5.4.4 Step 3: Combination

Finally, the third step of the algorithm tries to combine remote policy references
in order to minimize the number of policy evaluation requests between tenant and

Algorithm 4 Definition of the combine() method. ST and SP are as defined in
Algorithm 1.
def combine(AbstractPolicy p):
if p is Rule:
return p

else:
AbstractPolicy[][] groups = p.getCombinableChildren()
for AbstractPolicy[] group in groups:

Policy cp = new Policy(p.target, p.combinationAlgorithm, group)
SP .replace(group, cp) // no effect if group not in SP

ST .replace(group, cp) // no effect if group not in ST

p.children.replace(group, new RemotePolicyReference(cp)
return p

PERFORMANCE EVALUATION 133

provider (see Algorithm 4). More precisely, the algorithm combines multiple Policies
and/or Rules referenced in a single Policy into a larger equivalent Policy and combines
their remote policy references into a reference to that new Policy. For this, the
algorithm employs transformations T4, T5 and T6 as defined in Figure 5.2. In case of
FirstApplicable, only consecutive remote policy references in the children of a Policy
can be combined; in case of PermitOverrides or DenyOverrides, all remote policy
references can be combined since these algorithms are commutative as shown by
transformations T7 and T8.

Results from the case study. The policy tree resulting from normalizing and
decomposing the policies from the case study does not allow to combine multiple
remote policy references. As such, the final policy tree is shown in Figure 5.4.

5.4.5 Discussion: policy equivalence

An important property of the policy federation algorithm is that the federated policy
tree gives the same results as the original policy tree. To make this more concrete, we
here introduce the notion of policy equivalence.

Definition: Policy equivalence. Two policy trees P1 and P2 are equivalent iff
for every request R and context Ctx, evaluating P1 leads to the same decision as
evaluating P2. The context Ctx is a collection of attribute values of the subject, the
resource, the action and the environment: Ctx = (AS, AO, AA, AE). The request R
is a subset of the context: R ⊂ Ctx.

The policy federation algorithm maintains policy equivalence because (1) only step 1
and step 3 transform the policy tree and every applied transformation (see Figure 5.2)
maintains policy equivalence and (2) both the original policy tree and the federated
policy tree share the same context since the policies deployed provider-side will only
require provider attributes and non-sensitive tenant attributes, and all non-sensitive
attributes are available to both tenant and provider. An equivalent decomposition
also leads to an equivalent distribution, except for the fact that distributed policy
evaluation can introduce network exceptions.

5.5 Performance evaluation

In this section, we evaluate policy federation in terms of performance.

134 EFFICIENT FEDERATED EVALUATION OF ACCESS CONTROL POLICIES

Figure
5.4:

Th
e
resultofdecom

posing
the

norm
alized

version
of

P
0
illustrated

in
Figure

5.3.
G
rey

elem
ents

are
deployed

provider-side,w
hite

elem
entsare

deployed
tenant-side.Elem

entsw
ith

a
prim

e
sym

bolare
referencesto

a
rem

ote
policy.

PERFORMANCE EVALUATION 135

For the performance evaluation, we can evaluate the impact of policy federation
on policy evaluation time and the performance of the algorithm itself. The policy
federation algorithm is meant to be run at policy deployment time, i.e., independently
of the policy evaluation flow, and therefore does not introduce run-time overhead. For
the policies presented in the case study, the algorithm takes about 11ms; for policies of
one order of magnitude larger2, the algorithm still takes less than 2 seconds. Because
these durations fit the asynchronous usage of the federation algorithm, we do not
provide more details about this and focus on the impact of policy federation on policy
evaluation time.

5.5.1 Middleware prototype

To measure the performance impact of policy federation, we implemented a prototype
of both the federation algorithm (2KLOC) and a middleware system supporting policy
federation (6KLOC). Both build upon the SunXACML policy evaluation engine [7].
The source code is publicly available on-line1.

Figure 5.5 shows the architecture of the supportingmiddleware in terms of the XACML
reference architecture for policy-based access control systems (see Section 2.3.2).
As illustrated, this architecture is an extension of the architecture for federated
authorization of the previous chapter (see Section 4.3.2). In the architecture of
Figure 5.5, both the provider and the tenant will evaluate polices and therefore both
have a Policy Administration Point (PAP), a Policy Decision Point (PDP), a Context
Handler and one or more Policy Information Points (PIPs). The provider hosts the SaaS
application and therefore also the PEP. The provider hosts the attributes concerning
the resources in the application (AR) and the provider part of the environment (AE,P);
the tenant hosts the attributes concerning the subjects of the application (AS) and the
tenant part of the environment (AE,T). Non-sensitive attributes are made available
to the other party by means of an attribute service, the PDPs by means of a Remote
Policy Decision Point (RPDP). As a result, the interface between the provider and a
tenant now consists of four services, compared to two for federated authorization as
discussed in Chapter 4.

In the prototype, the RPDPs and attribute services are published as SOAPweb-services
implemented on top of Apache Tomcat 7 using the Apache CXF services framework.
The Policy Federation Layer shown in Figure 5.5 is the focus of this work. This layer
cooperates with the tenant and provider PAP in order to deploy the tenant policies
after the initial decomposition step.

2For this, we randomly constructed an artificial policy tree of five levels, each Policy having a branching
factor of three and each Policy and Rule requiring five random attributes.

136 EFFICIENT FEDERATED EVALUATION OF ACCESS CONTROL POLICIES

Figure 5.5: Architecture of the supporting middleware for policy federation in terms
of the XACML reference architecture (see Section 2.3.2). The Policy Federation Layer
is the focus of this work.

5.5.2 Test set-up

The performance impact of policy federation can be expected to depend on the
characteristics of the policy, e.g., its size, the number of required attributes, the location
of these attributes etc. Thus, in order to give a realistic view of the performance impact
of policy federation, we employ the policies from Section 5.2 and measure (i) the
number of remote requests (i.e., attribute requests or policy evaluation requests)
between tenant and provider needed for evaluating the policies and (ii) the total
policy evaluation time.

We compare three cases: (i) provider-side evaluation: in this case the policies are
completely evaluated provider-side, (ii) tenant-side evaluation: in this case the policies
are completely evaluated tenant-side, and (iii) federated evaluation: in this case, the
policies are deployed across tenant and provider as resulting from the federation
algorithm. We employ 26 different access requests that together cover every branch
of the original policy tree. Notice that in case of the provider-side case, sensitive
attributes have to be disclosed to the provider.

Each of the main components of the prototype runs on a separate machine with 1GiB
RAM and a single core of 2.40GHz running Ubuntu 12.04. Attributes are stored locally

PERFORMANCE EVALUATION 137

on the machine that requires them. Using fixed network delays, the round-trip time of
a request between tenant and provider is set to 10ms to simulate the distance between
these parties. In order to avoid overhead of parallelism, the tests are run sequentially
and PDP evaluation is performed in a single thread. Each test starts with 500 warm-up
requests and is repeated until the confidence interval lies within 2% of the sampled
mean for a confidence level of 95%.

5.5.3 Results

Figure 5.6 shows the results of the performance tests. Because the federation algorithm
does not take into account the frequency of each request, we do not state means over
all requests, but list the results for each access request separately.

We can make several observations from the figure. First, provider-side evaluation
requires the same or larger number of remote requests than tenant-side and federated
evaluation in all cases, leading to longer evaluation times in most cases. This is
caused by the fact that the policies from the case study require more tenant attributes
than provider attributes. Request 13 is the most extreme case, where all required
attributes are stored tenant-side and 7 attribute requests are replaced by a single
policy evaluation request.

Second, in most cases, federated evaluation leads to the same or less remote requests

0
2
4
6
8
10

Nu
m

be
r o

f
re

m
ot

e
re

qu
es

ts

Provider-side Tenant-side Federated

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 0
20
40
60
80
100
120
140

Po
lic

y
ev

al
ua

tio
n

tim
e

(m
s)

Figure 5.6: Results of the performance tests. The upper chart shows the number of
remote requests needed for evaluating the policies for a certain request (lower is
better), the lower chart shows the resulting policy evaluation time in milliseconds
(lower is better). For each access request, we show the results for provider-side
evaluation, tenant-side evaluation and federated evaluation. As shown, the federated
policy provide the best results for most access requests.

138 EFFICIENT FEDERATED EVALUATION OF ACCESS CONTROL POLICIES

than tenant-side evaluation. The same number is achieved if R9, i.e., the sub-tree
that is deployed provider-side, is not required to reach an access control decision,
e.g., for requests 13 to 16. Smaller numbers are achieved in the other cases, e.g., for
requests 4 to 7. In these cases, multiple attribute fetches from tenant to provider are
replaced by a single policy evaluation request. This shows the intended results of
the federation algorithm. However, the smaller number of remote requests does not
lead to proportionally shorter evaluation times, e.g., for requests 4, 5 and 6. This is
caused by the larger overhead of a policy evaluation versus an attribute fetch, while
the federation algorithm assumed both to be equal. In requests 24 and 25, tenant-side
and federated evaluation even perform worse than provider-side evaluation because
of this.

Finally, for requests 8 and 22 to 26, federated evaluation leads to larger numbers
of remote requests and longer evaluation times than tenant-side evaluation. This
is caused by the fact that R9 is evaluated, but all attributes required to come to a
decision are already cached. Thus, federated evaluation requires a policy evaluation
request, while tenant-side evaluation does not require any attribute fetches. This
issue can further be optimized in the future.

5.6 Discussion

In the previous sections, we presented the technique of policy federation, which aims
to decompose and deploy access control policies over multiple parties for improved
performance and confidentiality. In this section, we discuss the results of this work
and in which ways it can be refined and extended.

Confidentiality. Similar to federated authorization, policy federation keeps the
sensitive tenant attributes and policies confidential by not sharing them with the
SaaS provider. As discussed in the previous chapter however, a potential threat to
this approach is the possible inference of policies or attributes by the provider based
on the complete set of access requests and decisions. For this, we argue that the
possibly inferred knowledge is limited since both the tenant policies and the required
attributes remain confidential and the provider can only request the tenant to evaluate
the policies resulting from the federation algorithm. However, future work is required
to answer this question more quantitatively, for example using techniques such as
logical abduction.

Towards the future, the confidentiality model employed in the federation algorithm
can be refined. The algorithm now assumes that an attribute or element in the policy
tree is labeled sensitive or non-sensitive. In a more extensive case, a sensitivity
meta-policy could express more complex rules, for example, limiting attribute release

DISCUSSION 139

to some parties based on their identity or defining a certain combination of multiple
attributes as confidential.

Performance. The performance evaluation showed that policy federation has the
ability to improve policy evaluation performance. With thematuration of policy-based
and attribute-based access control, access control policies will only grow in both size
and complexity and the performance gain of policy federation can be expected to
increase as well.

In order to achieve further improved results, the algorithm can be refined in several
ways. First, remote policy references can be extended with local targets in order
to avoid the unnecessary policy requests mentioned in Section 5.5.3. Second,
the algorithm achieves sub-optimal results because it assumes that remote policy
evaluations take equally long as remote attribute fetches, while a policy evaluation
in general takes more time than an attribute fetch (amongst others because a policy
evaluation can require multiple database accesses and an attribute fetch always
requires one). While policy evaluation engines are expected to provide improved
performance towards the future (e.g., [152]), the cost functions in the algorithm can be
refined to take into account this difference. As a further extension, the performance
properties of the infrastructures of the provider and the tenant can be taken into
account as well. Finally, the algorithm now only statically reasons about policies.
In order to further optimize towards common access requests, the algorithm can be
applied at run-time, thereby incorporating run-time statistics.

Obligations and attribute updates. Another part of future work is to incorporate
obligations, i.e., operations which should be performed in conjunction with enforcing
the access control decision (see Section 2.2.4 for more information). For example,
obligations can be used to specify that the user should agree to a license agreement
or that the policy evaluation engine should write out a log, send an e-mail to an
administrator or update an attribute value. Similar to attributes and policies in the
policy tree, the tenant can regard certain obligations as sensitive and thus, obligations
should be incorporated in the process of policy federation.

An interesting subset of obligations are attribute updates. Attribute updates can
be used to model history-based policies [110], e.g., a separation-of-duty policy that
states that a member of the help desk cannot view both insurance and financial
documents of a single organization or a policy that limits the number of views
of a document. Both attribute updates and history-based policies introduce extra
complexity in policy federation because (i) attribute updates require concurrency
control in case of distributed policy evaluation and (ii) history-based policies are
known to have a large impact on performance [110]. Both are therefore interesting
tracks for future research.

140 EFFICIENT FEDERATED EVALUATION OF ACCESS CONTROL POLICIES

Generalization to N>2 parties. A final possible extension of this work is a
generalization to more than two parties. This chapter focused on a tenant renting
access to a SaaS application and that tenant wanting to enforce tenant-specific access
control policies on that application. This situation can be extended to more than
two parties, e.g., a patient monitoring service provided to multiple hospitals which
collaboratively provide care to the same patient or the collaboration platform discussed
in the previous chapter. If this set-up reduces to each organization applying its specific
policies to a shared application, the algorithm can separately be applied to the policies
of each organization without change. For set-ups that do not show this pattern, e.g.,
a federation in which a single policy reasons about data of more than two parties, the
algorithm should be extended. However, we do expect the techniques in this chapter
to apply to this situation as well.

5.7 Related work

This work describes rewriting and optimizing access control policies. In general, it
has been inspired by the work on query optimization in database systems, which
similarly discusses transformation rules, heuristic-based optimization and cost-based
optimization for distributed execution. In essence, this work applies these techniques
to the domain-specific tree-structured policy model described in Section 5.3. For an
overview of this large body of work, we refer to [97].

Specifically in the domain of policy-based access control, several other authors have
also focused on the problem of policy decomposition and distribution. Bauer et al. [40]
describe a distributed system for constructing formal proofs, aimed at access control.
Amongst others, they also briefly discuss tactics to take into account confidentiality of
input data and to improve performance based on the location of the input data. This
work extends and applies the general principles discussed in their work on practical
policy trees to achieve an algorithm for policy federation. In addition, Ardagna et
al. [32] focus on controlled disclosure of sensitive access control policies to clients in
the domain of web services. They therefore also discuss policy decomposition and
transformation rules. However, while this work has definitely been an inspiration
to ours, their goal is to provide a limited view on sensitive policies. Therefore,
their approach does not maintain policy equivalence and does not directly apply
to our goal. Finally, the work of Lin et al. [149] sketches a theoretical framework
for policy decomposition and distribution based on performance and confidentiality
requirements. Their goal is similar to ours and their work has been an important
influence. However, they describe a theoretical approach based on a simplified policy
model which limits its applicability. Thus, this work extends theirs with a more
widely-applicable policy model, a description of supporting middleware and a real-life
evaluation.

CONCLUSION 141

Several other authors have also investigated the problem of confidentiality-aware
access control for outsourced applications and other solutions exist. For example,
Asghar et al. [34] employ attribute and policy encryption, extending the work of
di Vimercati et al., e.g., [93]. This approach is dual to policy federation and should
allow all tenant data to be securely shared with the provider, but also introduces
performance overhead and is still limited in policy expressivity, for example only
being able to compare attributes with literal values.

Finally, this work fits in a growing collection of performance-enhancing tactics for
policy-based and attribute-based access control. This work builds upon the idea of
improving policy evaluation performance by focusing on attribute fetching, as first
introduced by Brucker and Petritsch [58]. Policy federation can be complemented
with the work of several other authors, e.g., Wei et al. [203], who focus on decision
caching and Gheorghe et al. [113], who focus on infrastructure reconfiguration for
optimal attribute retrieval and cross-request attribute caching.

5.8 Conclusion

This chapter introduced the technique of policy federation. Policy federation aims to
improve the performance of federated authorization by decomposing and distributing
the tenant-specific policies across tenant and provider so that each part of the policies
is evaluated near the data it requires as much as possible while sensitive tenant data
and policies are kept confidential. In this regard, we defined a simple yet generic
attribute-based policy model, described a detailed algorithm for policy federation
and elaborated on the design of supporting middleware. As our evaluation shows,
policy federation succeeds in keeping the sensitive tenant data confidential and has
the ability to improve policy evaluation time as well. While we presented policy
federation in the context of federated authorization, this technique can effectively be
applied to optimize the performance of any policy evaluation system in which the data
required to evaluate a policy is spread, e.g., the collaboration platform presented in
the previous chapter or the multi-tier policy evaluation engine of Amusa presented in
Chapter 3. As such, this work has contributed to a growing collection of performance
techniques for policy-based and attribute-based access control.

The next chapter returns focus from the tenants of a SaaS application to its provider.
More precisely, the next chapter focuses on the challenge of applying policy-based
access control to large-scale applications such as SaaS applications and supporting
the large number of requests per second that these applications face.

Chapter 6

Concurrent evaluation of access
control policies

This chapter introduces our fourth contribution: a scalable concurrency control
scheme specifically for evaluating access control policies. The goal of this chapter is
to enable policy-based access control for large-scale distributed applications such as
most SaaS applications. When applying access control to such applications, the access
control policies must be evaluated concurrently as well. However, for certain classes
of policies such as history-based policies, concurrency can be exploited to achieve
incorrect access decisions. Moreover, general techniques for concurrency control in
databases are not able to scale to the size of SaaS applications and at the same time
provide the full consistency required for security. Therefore, this chapter presents a
concurrency control scheme specifically for access control. This scheme leverages
the domain-specific structure of a policy evaluation to scale to a large number of
machines while incurring only a limited and bounded latency overhead.

This chapter stems from the goal of enabling policy evaluation to securely scale out
with low performance overhead. As such, this chapter focuses on the challenge of
the large scale of a SaaS application and the concern of low performance overhead
(see Section 1.2). This chapter is based on our publications at MW4NG 2013 [87] and
at ACSAC 2015 [86].

143

144 CONCURRENT EVALUATION OF ACCESS CONTROL POLICIES

6.1 Introduction

Most SaaS applications aim for a large amount of tenants. To be able to cope with the
resulting amount of requests to the application, these SaaS applications are deployed
on a distributed infrastructure. This way, multiple requests can be handled in parallel
by different machines and the number of machines can be scaled up for achieving
larger throughputs while handling each request with low latency.

Because access control should be enforced onmost, if not any, request to an application
but should not impede the correct use of this application, the access control system
should be able to provide the same throughput, scalability and low latency. For
policy-based access control, this means that the access control policies must also be
evaluated concurrently and distributedly.

For certain policies however, concurrent evaluation can lead to incorrect access
decisions if not performed properly. For example, take the rule “if the user has had
access to documents of Bank A, he or she is not allowed to access documents of Bank B”.
This rule is taken from the eDocs case study (see Chapter 3) and is an example of the
well-known and common class of history-based policies [56, 95, 110, 125, 153, 171, 169].
For these policies, one evaluation of the policy influences future evaluations, which
leads to race conditions. As a result, if a user has not had access to documents of Bank
A or Bank B, this user could exploit concurrency to have the policy permit two parallel
requests, thus violating the policy. This problem affects the practical application of
history-based policies in large-scale applications such as SaaS applications.

A possible solution to this problem would be to model a policy evaluation as a
transaction on the database that contains the data utilized in the policy. In this case,
policy evaluation requires strong consistency because it is a security measure and
therefore does not allow a single incorrect decision. However, databases inherently
cannot scale to the size of current applications and at the same time provide such
strong consistency. Moreover, policy evaluation often requires data from multiple
sources in practice. This would lead to distributed transactions, which do not perform
well. As a result of all this, what we need is an efficient and scalable domain-specific
scheme for concurrency control at the level of policy evaluation itself.

In this chapter, we present and evaluate such concurrency control scheme. More
precisely, we first model history-based policies using attributes, policy trees and
obligations and then present a concurrency control scheme for evaluating such policies.
By leveraging the specific structure of a policy evaluation, this domain-specific scheme
(i) is able to avoid incorrect access control decisions due to concurrency, (ii) is able
to scale to a large number of multi-core machines and (iii) incurs only a limited and
asymptotically bounded latency overhead.

The rest of this chapter is organized as follows. Section 6.2 elaborates on the need for

PROBLEM ELABORATION 145

concurrency and concurrency control in policy evaluation. Section 6.3 presents our
scheme for concurrency control, both for a centralized and a distributed deployment.
Section 6.4 verifies that this scheme is able to scale to a large number of machines by
means of a prototype. Section 6.5 discusses related work and our approach. Section 6.6
concludes this chapter.

6.2 Problem elaboration

This section starts by discussing the need for concurrent and distributed policy
evaluation and illustrates the need for concurrency control.

6.2.1 The need for concurrency and distribution

This chapter focuses on concurrent and distributed evaluation of access control policies.
Our experiences in our case studies and related work (e.g., [31, 63, 130]) illustrate
that these techniques are crucial to applying policy-based access control to realistic
applications for several reasons. For example, distribution is inherent to some of
these applications because multiple distributed parties have to collaborate (e.g., [149]).
The most common reason for concurrency and distribution however is throughput:
current applications such as SaaS applications are aimed for a large number of users,
which results into large amounts of requests per second. In order to cope with this

Figure 6.1: In order to support large throughputs, current applications are designed
for and deployed on a scalable distributed infrastructure. In these cases, a central
policy decision point is not able to scale with the application.

146 CONCURRENT EVALUATION OF ACCESS CONTROL POLICIES

requirement, these applications are deployed on a distributed infrastructure so that
multiple requests can be handled in parallel by different machines. In addition, these
applications employ tactics in order to scale out horizontally without introducing
large latency overheads, e.g., load balancing over multiple machines (see Figure 6.1).

Applying policy-based access control to these applications leads to equally large
amounts of policy evaluations per second because access control should be enforced
on every action performed in the application. Without concurrency or distribution,
the only possibility is a central policy evaluation point that sequentially evaluates
the policy for multiple requests and therefore is not able to scale with the application.
In other words, realistic applications, and SaaS applications in particular, require to
be able to evaluate a policy for multiple requests concurrently (i.e., in parallel) and
distributedly (i.e., on multiple machines).

6.2.2 The need for concurrency control

While other authors have also focused on concurrent and distributed policy evaluation
(e.g., [31, 63, 130]), one crucial issue has been overlooked for now: the need for
concurrency control.

Concurrent or distributed policy evaluation is trivial in case evaluating the policies
only requires to read data, i.e., the policies do not update data. This is the case for
policies of models such as lattice-based access control and role-based access control
(see Section 2.2.3). As a result, such policies are already being applied in distributed
applications without any issues. There is however an important class of policies
that does update data as a result of evaluating the policy: history-based policies
(sometimes also called stateful policies [125]). A well-known instance of such policies
also present in our case studies are dynamic separation-of-duty policies or Chinese
wall policies [56], for example:

P1: If a user has had access to documents of Bank A, he or she is not allowed to access
documents of Bank B.

Another common class of history-based policies are policies that put upper limits on
the amounts of resources consumed by subjects, for example:

P2: A user cannot view more than 10 movies per month.

Or similar policies from the point of view of the resources:

PROBLEM ELABORATION 147

P3: An article cannot be shared more than 5 times.

Other authors mention similar examples (e.g., [56, 62, 95, 110, 111, 130, 153, 169, 171]).

These policies are called history-based policies because one access decision depends
on the previous decisions, i.e., the history. For example in P1, permitting the subject
to access a document of Bank A influences the policy evaluations for the same subject
and documents of Bank B. In this case, the sequential evaluation of the policy for a
document of Bank A and a document of Bank B for the same subject would lead to a
permit and a deny (as illustrated in Figure 6.2a).

However, because these policies both read and update the history, race conditions can
occur when evaluating such policies concurrently. For example, Figure 6.2b illustrates
the concurrent version of Figure 6.2a. In this case, both policy evaluations initially
see an empty history of the subject, leading to the incorrect result of permitting both

// request of Subject1 for
// a document of Bank A
read subj.history // = []
... // decide on permit
append "Bank A" to subj.history
return Permit
...
// request of Subject1 for
// a document of Bank B
read subj.history // = ["Bank A"]
... // decide on deny
return Deny

(a) Sequential evaluation of P1

// request of Subject1 for
// a document of Bank B
read subj.history // = []
... // decide on permit
append "Bank B" to subj.history
return Permit

// request of Subject1 for
// a document of Bank A
read subj.history // = []
... // decide on permit
append "Bank A" to subj.history
return Permit

(b) Concurrent evaluation of P1

Figure 6.2: Sequential versus concurrent evaluation of history-based policy P1 of
Section 6.2.2. As illustrated, concurrently evaluating a history-based policy can lead
to incorrect access decisions if not performed properly.

148 CONCURRENT EVALUATION OF ACCESS CONTROL POLICIES

requests. Similarly, a concurrent evaluation of P2 and P3 could respectively permit a
user to view more than 10 movies in one month and permit a document to be shared
more than 5 times.

These examples are instances of a well-known problem in distributed systems called a
read-write conflict and they illustrate that race conditions in policy evaluation can lead
to security holes that can be actively exploited by an attacker. This problem affects
any distributed or concurrent enforcement of history-based policies, both in practice
and in literature. In order to prevent these race conditions from leading to incorrect
decisions, we require a form of concurrency control that ensures that concurrent policy
evaluations provide the same decisions as sequential evaluations, a property called
serial equivalency.

6.2.3 The need for concurrency control at the level of policy eval-
uation

In order to address the race conditions when evaluating history-based policies, a form
of concurrency control is required. A straightforward approach to achieve this would
be to model these evaluations as transactions on an underlying database. However,
there are two reasons why this approach does not work.

Firstly, our experience shows that the data required for evaluating a policy often
originates frommultiple sources, such as a directory service of user data and a database
of application data. Concurrency control in this situation would require distributed
transactions over multiple technologies, which does not perform well because of the
network and marshaling overhead of the negotiations between all involved attribute
sources.

Secondly, even if all access control data is available in a single database, policy
evaluation is a security technique that does not tolerate a single incorrect decision
and therefore requires strong consistency. Strong consistency means that all reads and
updates are seen by all database instances in the same sequence. However, because
strong consistency requires to negotiate every write with every replica, databases (or
other types of data storage) are inherently not able to provide both strong consistency
and scalability. For example, the relational database MySQL1 does provide strong
consistency, but limits read-write transactions (which are required to model the
evaluation of a history-based policy) to a single master server. More recent “NoSQL”
databases such as Cassandra1 or MongoDB1 on the other hand were designed for
scalability, but therefore limit transactions to compare-and-set operations on a single
element in the database (i.e., a table row or a document). A history-based policy
however can update data of both a subject and a resource (e.g., a combination of P1

1https://www.mysql.com/, http://cassandra.apache.org/, https://www.mongodb.org/

CONCURRENCY CONTROL 149

and P3) and a single subject can access multiple resources, which makes it impossible
to segregate the data of a single policy evaluation in separate database elements. As
a result, these databases also do not provide the necessary concurrency control for
policy evaluation.

In conclusion, we argue that we require an efficient and scalable scheme for
concurrency control at the level of policy evaluation itself.

6.2.4 Requirements for concurrency control

As a result of the previous discussion, the goal of this work is to design a scheme for
concurrency control for policy evaluation. This scheme (i) should prevent incorrect
access decisions because of race conditions, (ii) should provide low latency overhead
and (iii) should be able to scale out to large numbers of machines in terms of
throughput. As we will see, we achieve these properties by leveraging the domain-
specific structure of a policy evaluation.

Notice that we focus on concurrency and distribution between multiple policy
evaluations for throughput and deliberately leave concurrency within a single policy
evaluation (e.g., as described in [149, 194]) out of scope because this does not add
extra complexity for concurrency control.

6.3 Concurrency control

The goal of this work is to design a scalable and efficient concurrency control
scheme for the evaluation of history-based access control policies. In this section,
we first describe how we model history-based policies in current attribute-based
tree-structured policy languages such as XACML and STAPL, then describe possible
approaches to concurrency control and finally describe our resulting scheme for
concurrency control.

6.3.1 Modeling history-based policies in current policy languages

In this work, we represent policies in the model of XACML and STAPL. As explained
in Section 2.3.1, this model combines three interesting techniques: attribute-based
access control (ABAC), policy trees and obligations. Firstly, ABAC is able to express a
wide variety of well-known access control concepts and effectively generalizes the
previous models of identity-based access control, lattice-based access control and
role-based access control [127]. Secondly, policy trees enable structuring multiple

150 CONCURRENT EVALUATION OF ACCESS CONTROL POLICIES

When resource.owner == "Bank B",
apply DenyOverrides to:

Deny if
"Bank A" in subject.history

Permit performing
append("Bank B", subject.history)

Figure 6.3: Representation of P1 of Section 6.2.2 as an attribute-based policy tree with
obligations, similar to XACML.

rules into one well-defined policy and reason about possible conflicts between these
rules. Thirdly, obligations define operations that should be performed when enforcing
an access decision, such as “log this event” or “notify a security administrator that
access is denied to a confidential document”.

History-based policies can be represented in XACML and STAPL by modeling the
history as an attribute that is updated as a side-effect of policy evaluation, an approach
also advocated by Park and Sandhu [171]. For example, in P1, that attribute would
be subject.history, which contains the list of companies of which the subject
has accessed documents. The update of this attribute can then be represented in
XACML as an obligation2, an approach also taken by Chadwick [62]. Figure 6.3
illustrates the resulting representation of P1 as an attribute-based policy tree with
obligations. Interestingly, because obligations are always defined to only hold for a
certain decision, they are only enforced after the final decision is known, i.e., after the
policy has been evaluated entirely [5]. As a result, all attribute updates are performed
after the last attribute read (see Figure 6.4), a property that we build upon later on.

As a side-remark, notice that the access control system performs the history updates
in our approach, but that one could argue that the history should be updated by
the application itself or that the history updates should be performed implicitly,
for example using logs or provenance data [169]. In order to be able to perform
concurrency control on the level of policy evaluation however, we argue that the
attribute updates are best performed by the access control system itself. The discussion
in Section 6.5 goes deeper into this topic.

2While obligations can also be used to express other operations than attribute updates, e.g., writing a
log, we only take into account attribute updates as obligations for the rest of this chapter for simplicity.
This choice does not affect the validity of this work as attribute updates are the only type of obligation that
require concurrency control.

CONCURRENCY CONTROL 151

For all required attributes

For all attribute updates in the obligations

Policy
Information Point

Application / Policy
Enforcement Point

Policy Decision Point

1.4: ok

1.2: value

1.3: updateAttr(entityId,name,value)

1.1: getAttr(entityId,name)

1: canAccess(subj.id,res.id,act.id,[...])

1.5: decision

Figure 6.4: A black box representation of a policy evaluation by a policy decision point.
As illustrated, all attribute updates are performed after the last attribute read [5], a
property that we build upon in our approach.

6.3.2 Tactics for concurrency control

As explained, our goal is to design concurrency control that prevents incorrect
concurrent access decisions by enforcing serial equivalence. In attribute-based policies
such incorrect decisions result from an attribute update that is executed during another
policy evaluation that has already read an older value of this attribute. Thus, our
goal can be refined to detecting such conflicting pairs of attribute updates and reads
in concurrent policy evaluations and preventing these from returning an incorrect
decision to the application. Moreover, examples of history-based policies in literature
(e.g., [56, 62, 95, 110, 111, 130, 153, 169, 171]) and our own case studies (see the previous
chapters) only exhibit attribute updates for subjects and resources, i.e., not for the
action and the environment. These subject and resource attributes are always assigned
to a single subject or resource. As a result, our goal can further be refined to detecting
and addressing pairs of conflicting attribute updates and reads for the same attribute
of the same subject or resource. For example in Figure 6.2b, the append of the left
evaluation and the read of the right evaluation make up such a pair.

Three possible tactics. From a high-level point of view, there are three tactics
for concurrency control that can provide serial equivalence: locking, timestamp
ordering and optimistic concurrency control (see for example [72]). With locking,
every evaluation would try to lock an attribute when reading or updating it and block
until the lock is granted. These locks are only granted if there are no conflicting
locks yet (e.g., a read lock when trying to obtain a write lock). With timestamp
ordering, every evaluation would be given a timestamp and every attribute read and

152 CONCURRENT EVALUATION OF ACCESS CONTROL POLICIES

update would be checked immediately to make sure that the attribute has only been
read (updated) by earlier transaction upon an update (read). If not, the evaluation is
restarted immediately. Finally, with optimistic concurrency control, conflicts with
ongoing evaluations are only checked upon commit at the end of the evaluation,
allowing the evaluations to read and update attributes as normally. If conflicts are
detected, any already executed updates are rolled back and the evaluation is restarted
together with any evaluations that have seen these updates.

Selected tactic. Of these three tactics, optimistic concurrency fits policy evaluation
the best. In this approach, concurrency conflicts are only checked upon commit at
the end of the evaluation. This allows the evaluations to read and update attributes as
normally. If conflicts are detected, any already executed updates have to be rolled back
and the evaluation has to be restarted together with any evaluations that have seen
these updates, which leads to overhead. For policy evaluations however, the attribute
updates are always executed after the last attribute read as illustrated in Figure 6.4. As
a result, this process naturally allows to check for conflicts after all reads and before
actually executing the updates (i.e., right before the appends in Figure 6.2b), which
avoids having to roll back any update. In addition, we expect that situations such as
a user accessing documents of both Bank A and Bank B in parallel rarely occur in
non-malignant behavior. As such, the overhead of restarting evaluations is negligibly
small in the whole space of non-malignant requests (and we do not care about the
performance for malignant requests). Finally, optimistic concurrency control also
has the advantage that it can be executed on a separate layer of concurrency control
without having to rely on any database feature.

Resulting high-level design. As a result of our choice for optimistic concurrency
control, we effectively split up the Policy Decision Point of Figure 6.1 into a system
with three types of components: the worker, the attribute database and the coordinator.
Firstly, one or more workers are responsible for evaluating the policy for different
requests. To do so, these workers can all fetch attributes from one or more attribute
databases, i.e., Policy Information Points, which store the attributes across multiple
policy evaluations. Finally, the coordinator is responsible for performing concurrency
control on the policy evaluations performed by the workers and is therefore placed
in between the application and the workers. Notice that the interface to the Policy
Decision Point remains the same from the point of view of the application or the
Policy Enforcement Point.

In the next sections, we describe two instances of the coordinator: a centralized
coordinator that enforces our concurrency control scheme on a single machine, and a
distributed coordinator that is able to scale out itself.

CONCURRENCY CONTROL 153

6.3.3 Centralized coordinator

In this section, we describe our basic scheme for concurrency control and how it can
be implemented in a centralized coordinator that manages multiple workers.

Basic approach. Our basic approach is that the coordinator receives every policy
evaluation request before it is passed to a worker and every decision before it is passed
back to the application. The coordinator then keeps track of which attributes were
updated during each policy evaluation. More specifically, because a policy only reads
and updates attributes of a single subject and resource, the coordinator maintains
the list of attributes that were updated for the subject and resource of every ongoing
policy evaluation. To achieve this, the workers return the list of attributes that were
read in a policy evaluation and the application has to specify at least the id of the
subject and the resource.

Protocol. Figure 6.5 illustrates the resulting protocol for concurrency control. When
the application requires an authorization decision, it sends a policy evaluation request
to the coordinator (step 1). The coordinator then assigns a unique identifier to this
evaluation (step 2) and passes the request along to a worker3 (step 3). The worker
then evaluates the policy for this request (step 4) and returns its decision together
with the list of attributes that should be updated and the list of attributes that were
read (step 5). The coordinator then checks whether this evaluation has read any
attribute that was updated during this evaluation (step 6). If not, the coordinator
persists the attribute updates (step 7), adds these attributes to the lists of updated
attributes of policy evaluations for the same subject or resource (step 8) and returns
the decision to the application (step 9). In case the coordinator detects a conflict (e.g.,

3Our scheme deliberately leaves open the way in which the coordinator decides to which worker a
request should be assigned, any technique for load balancing can be used.

Figure 6.5: The protocol for concurrency control using the centralized coordinator, in
case there is no conflict.

154 CONCURRENT EVALUATION OF ACCESS CONTROL POLICIES

when trying to commit the right evaluation in Figure 6.2b), the coordinator restarts
the policy evaluation by reassigning the original request to a worker after clearing
its administration for this evaluation. Notice that in the reference architecture for
policy-based access control systems (see Section 2.3.2) the Policy Enforcement Point
enforces obligations. In our approach however, the coordinator, which is a part of
the Policy Decision Point, executes the attribute updates in order to be able to reason
about both attribute reads and updates for concurrency control.

Possible deployments. Figure 6.6 illustrates two possible deployments using the
centralized coordinator. As illustrated, the centralized coordinator can manage
multiple workers, but will have an upper limit to throughput as it cannot scale
out itself. In order to address this limitation, the next section extends the centralized
coordinator into a scalable distributed coordinator. Note that we deliberately do
not show the attribute database in Figure 6.6 because our system does not rely on a
specific deployment of this database, as will be explained in Section 6.3.5.

(a)

(b)

Figure 6.6: Two possible deployments using a centralized coordinator.

CONCURRENCY CONTROL 155

6.3.4 Distributed coordinator

In order to avoid that the coordinator becomes a bottleneck to the scalability of the
system, it should be scalable as well.

Approach. In order to scale out the coordinator, we build on the observation
that attribute updates only occur for subjects and resources, and that every policy
evaluation has exactly 1 subject and 1 resource. As a result, the list of relevant
attributes that were updated during an evaluation essentially consists of two parts:
the updated attributes that belong to the subject of the evaluation and those that
belong to its resource. Our approach to designing a scalable coordinator essentially
distributes these two parts over two coordinators, one responsible for the subject of
the evaluation and one for the resource. These two distributed coordinators collaborate
for correct concurrency control.

The key to scaling out is that every request is handled by two distributed coordinators,
but that these are part of an arbitrarily large pool of coordinators. More precisely,
each subject and resource is assigned to exactly one responsible coordinator and
this coordinator manages this subject/resource for all policy evaluations related to
it. To achieve this, all application instances and distributed coordinators agree on
the ordered list of coordinators in the system and the responsible coordinators are
determined based on a hash of the id of the subject and resource in question. This
hash should ensure that the subjects and resources are distributed uniformly across
the pool of coordinators.

Protocol. Figure 6.7 illustrates the resulting collaboration protocol between the two
distributed coordinators responsible for a single request. First, when the application
requires an authorization decision, it determines the coordinator that is responsible
for the subject in question based on the id of the subject and the list of coordinators
(step 1). The application then sends a policy evaluation request to this coordinator
(step 2). This coordinator assigns a globally unique id to this evaluation, sets up the
administration for the subject, adds any tentatively updated attributes to the request
(see step 9), determines the coordinator responsible for the resource in question (all
step 3) and forwards the authorization request to that coordinator (step 4). That
second coordinator sets up the administration for the resource (step 5) and assigns
the request to a worker (step 6) which evaluates the policy for this request (step 7).
After the evaluation, the worker sends the result to the coordinator responsible for
the subject (step 8). This coordinator checks whether the evaluation employed subject
attributes that were updated in the mean while. If not, it tentatively executes the
updates of subject attributes (step 9). This means that future evaluations for this
subject will see these updates, but that the coordinator will restart evaluations that

156 CONCURRENT EVALUATION OF ACCESS CONTROL POLICIES

Figure 6.7: The protocol used for distributing concurrency control over two
coordinators, in case there is no conflict.

have read these attributes if this evaluation could not commit entirely because of
conflicts for resource attributes (see steps 11 and 12). The coordinator then asks
the coordinator responsible for the resource whether there are conflicts for resource
attributes (step 10). That coordinator checks its administration and if there are no
conflicts, executes the updates of resource attributes, clears its administration for this
evaluation (both step 11) and acknowledges success to the first coordinator (step 12).
This coordinator then executes the tentative attribute updates, clears its administration
for this evaluation (both step 13), and passes the decision along to the application
(step 14).

In case conflicts were found, the protocol ends differently. Firstly, in case the
coordinator responsible for the subject detects a conflicting update of a subject
attribute, it does not tentatively execute the attribute updates, but immediately restarts
the evaluation by clearing its administration for this evaluation and resending the
initial request to the coordinator responsible for the resource. That coordinator
notices that this request was restarted by checking its list of ongoing evaluations, also
clears its administration for this evaluation and assigns the request to a worker again.
Secondly, in case there were no conflicts for subject attributes but the coordinator
responsible for the resource detects a conflicting update of a resource attribute, that
coordinator does not execute the updates of the resource attributes, but notifies the
subject coordinator that the evaluation cannot commit. This coordinator then restarts
the evaluation as described before and will also restart evaluations that employed the
tentatively updated subject attributes (this is checked before checking for conflicting
subject updates).

Note that this protocol does not suffer from race conditions itself because (i) the same
coordinator is contacted for the same subject or resource, (ii) the same coordinators
are responsible for managing an evaluation both before and after and (iii) these
coordinators are contacted in the same order. Additionally, the messages between

CONCURRENCY CONTROL 157

these coordinators should be guaranteed to arrive in the order as they were sent,
which is a common property of current messaging technologies.

Possible deployments. Figure 6.8 illustrates three possible deployments using the
distributed coordinator. Most interestingly, Figure 6.8c illustrates that the coordinator
can be deployed on the same machines as the application instances. This effectively
allows the access control system to scale out together with the application itself.

(a)

(b)

(c)

Figure 6.8: Three possible deployments using a distributed coordinator.

158 CONCURRENT EVALUATION OF ACCESS CONTROL POLICIES

6.3.5 Scaling out the attribute database

As explained in the previous sections, our design employs the attribute database to
store the attributes across multiple policy evaluations. More precisely, all workers
read attributes from this database and all coordinators store updated attributes in
this database. As a result, this database should be able to scale with the system and
should therefore be distributed and/or replicated as well. However, for correctness,
our design as explained for now requires this database to provide a consistent view of
the attributes to all workers, which hinders its scalability as explained in Section 6.2.3.

To address this, each coordinator caches recently updated attributes and adds these
to policy evaluation requests of the appropriate subject or resource (in step 2 of
Figure 6.5 and steps 3 and 5 of Figure 6.7). This tactic is possible because the attributes
of each subject and resource are cached by exactly one coordinator as a result of
their distributed responsibilities. By then having each coordinator cache updated
attributes longer than the inconsistency window of the attribute database, this tactic
enables a fully consistent view for all workers, even while employing a scalable
attribute database with eventual consistency and limited support for transactions
such as Cassandra or MongoDB. As an additional result, our system is independent
of the exact deployment of the attribute database (as long as it provides the necessary
throughput for the policy evaluations), which is the reason why we do not show it in
Figures 6.6, 6.7 and 6.8.

6.4 Evaluation

The previous section presented our concurrency control scheme for evaluation of
history-based policies and explained how this scheme prevents race conditions from
leading to incorrect decisions. Our goal was to achieve this in a scalable manner with
low latency overhead. In this section, we validate this performance behavior using a
prototype implementation. More specifically, we evaluate (i) the latency overhead of
concurrency control, (ii) the impact of conflicts on the system, and (iii) the scalability
of our scheme in three different deployments. First, we describe the prototype and
test set-up.

6.4.1 Prototype and test set-up

To evaluate the performance of our concurrency control scheme, we developed an
extensive prototype of it that integrates with the Amusa middleware (see Chapter 3).
The prototype builds upon the STAPL language for tree-structured attribute-based
policies. As explained in Section 2.3.1, STAPL is defined as a DSL in Scala and takes on

EVALUATION 159

the core model of XACML [5], but adds a simpler syntax and an efficient evaluation
engine. The prototype is also written in Scala and employs the Akka actor framework
for concurrency and distributed communication4. For our tests, we deployed the
prototype on virtual machines on an internal cloud platform, each ranging from 2 to
8 CPUs and having sufficient RAM.

The policy employed in the tests is a realistic policy (i.e., not an artificial one) that
resulted from the e-health case study of the patient monitoring application (see
Chapter 4). The policy consists of 14 logical rules structured in a policy tree of depth
4. It employs 27 different attributes such as the shifts of nurses, the patients of a
physician and the owner of a resource. The values of the attributes for the different
subjects and resources are stored in MySQL databases and are fetched during policy
evaluation. Because the resulting policy evaluation time varies heavily from request
to request, we employ 29 different access requests that together cover the whole tree
and we report averages over the complete set. The average evaluation time for these
29 different requests without any of our added functionality is 2.27ms. All of our
tests start with a warm-up phase that is disregarded in the results and the tests are
repeated until the results are stable.

The code of the prototype, the employed policy and the test results are available
on-line5.

6.4.2 Latency overhead

As a first test, we measure the latency overhead of the coordination for concurrency
control on policy evaluations without concurrency conflicts. More specifically, we
measure the time between sending an access request and receiving the response
while the workers perform an artificial policy evaluation of 0ms. For the centralized
coordinator, we deployed a client, a worker and a centralized coordinator on a single
machine. For the distributed coordinator, we deployed the client and a varying number
of distributed coordinators on individual machines. Each coordinator is deployed
with 1 worker and a local replica of the attribute database.

For the centralized coordinator, the average overhead on every request is 0.98ms.
This time is mainly due to the asynchronous queuing nature of the prototype because
of the use of Akka, which introduces a latency overhead in favor of scalability and
throughput.

For the distributed coordinator, Figure 6.9 illustrates the overhead with respect to the
amount of distributed coordinators. As we can see, the overhead of even 1 coordinator
is notably more than for the centralized coordinator, which is because the client is now

4http://akka.io/
5http://people.cs.kuleuven.be/~maarten.decat/acsac2015/

160 CONCURRENT EVALUATION OF ACCESS CONTROL POLICIES

1 2 3 4 5 6 7 8 9 10
Number of distributed coordinators

0
2
4
6
8

10
12
14
16

O
v
e
rh

e
a
d
 (

m
s)

Figure 6.9: The overhead of the distributed coordinator with respect to the size of the
pool of distributed coordinators.

located on a different machine. Moreover, this overhead grows for a larger number of
distributed coordinators. However, the overhead asymptotically approaches an upper
limit, which is the result of our strategy to uniformly distribute the management
responsibilities over the available coordinators (see Section 6.3.4). As a result, the
chance that the same coordinator is responsible for both the subject as well as the
resource of a single evaluation becomes 1/nbCoordinators. In other words, for
an increasing number of coordinators, the overhead asymptotically grows from the
situation where all requests are handled by a single coordinator to the situation where
all requests are handled by two collaborating coordinators, which requires more
remote communication. In this case, the latency overhead approaches 14ms, which
is limited and can amongst others be further improved by employing a more efficient
network or more efficient marshaling.

Conclusion. This test demonstrates that our approach imposes a latency overhead
on every request, but that this overhead is limited and asymptotically bounded with
respect to the number of distributed coordinators.

6.4.3 The impact of conflicts

The previous test did not involve concurrency conflicts. Therefore, we now measure
the impact of concurrency conflicts on the behavior of the system. More specifically,
we measure the throughput and latency of requests that are sent one after the other
while a centralized coordinator applies an artificial chance of conflicts ranging from
0% to 100%. The coordinator is deployed on a single machine with 4 CPUs together
with 4 workers.

For the latency, the results show that an increasing chance of conflicts leads to an
increasingly large group of requests that are restarted one or more times and thereby

EVALUATION 161

0 10 20 30 40 50 60 70 80 90 100
Chance of conflicts (%)

0

20

40

60

80

100

T
h
ro

u
g
h
p
u
t

(%
 o

f
m

a
x
 t

h
ro

u
g
h
p
u
t)

Figure 6.10: The throughput of a centralized coordinator compared to the chance for
concurrency conflicts, measured on a single machine with 4 workers and 4 CPUs.

suffer increased latency. The result on the throughput of the system is depicted in
Figure 6.10. As shown, the throughput is only minimally affected by the low numbers
of conflicts that we expect in normal behavior. For an increasing chance of conflicts,
the throughput systematically lowers (while the system is still working at its maximal
capacity). The throughput eventually reaches 0 requests/second when every request
keeps being restarted.

Conclusion. This test demonstrates that the number of conflicts lowers the effective
throughput of the system. This behavior is independent of the deployment of the
system. The impact is low when there is a low chance of conflicts, which we expect
in normal behavior. However, our approach can be further optimized for specific
situations with larger numbers of conflicts, such as controlled access to a resource
shared by a large number of users.

6.4.4 Scalability

The previous tests zoomed in on the latency overhead of our concurrency control
scheme and the impact of conflicts on its behavior. In the following tests, we evaluate
the scalability of our scheme using three different deployments that illustrate that
it can scale to large sizes of multi-core machines and a large number of machines.
For clarity, we discuss the maximal capacity of the system by performing these tests
without concurrency conflicts.

Centralized coordinator, co-located with workers

In a first deployment, we evaluate the behavior of a centralized coordinator and
a varying number of workers deployed on a single machine (as was illustrated in

162 CONCURRENT EVALUATION OF ACCESS CONTROL POLICIES

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Number parallel clients

0

500

1000

1500
T
h
ro

u
g
h
p
u
t

(r
e
q
u
e
st

s
p
e
r

se
co

n
d
) 1

2

3

4

5

6

7

8

9

(a) Throughput

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Number parallel clients

0

20

40

60

80

100

La
te

n
cy

 (
m

s)

1

2

3

4

5

6

7

8

9

(b) Latency

Figure 6.11: The latency and throughput of a centralized coordinator and a varying
number of workers deployed on a single machine of 4 CPUs, with respect to a growing
number of parallel clients.

Figure 6.6a). More specifically, we measure the throughput and latency of a growing
number of parallel clients that each repeatedly send one random request after the
other.

Figure 6.11a illustrates the resulting throughput for a machine with 4 CPUs. As
shown, the throughput of the system initially grows linearly with the growing load,
but eventually reaches a maximum where every worker is fully employed. This
maximum grows with the number of workers, but has a certain upper limit itself. At
that point the maximal throughput does not increase any more by adding another
worker because the hardware is fully employed. This upper limit depends on the
number of CPUs of the machine and lies around 4 workers for 2 CPUs, 7 workers for
4 CPUs, and 9 for 8 CPUs, supporting approximately 800, 1500 and 2000 requests per
second. For larger loads, the throughput of the system remains constant and does not
decrease, which is the result of the fact that the prototype queues requests for a fixed

EVALUATION 163

number of processing threads instead of spawning new threads for new requests.

Figure 6.11b illustrates the resulting latency. As shown, the latencies initially lie
around 6.5ms, but start to grow linearly with the growing number of clients once the
system is at its maximal throughput. This is the result of our test set-up with a fixed
number of clients that only send a new request once the previous is answered, so that
the queues in the system always contain a fixed number of requests that depends on
the number of clients.

Conclusion. These results demonstrate that our system is capable of using a multi-
core machine to its full capacity, but also that a single machine has a fixed maximum
throughput. Once this upper limit is reached, the system should scale out in order
to avoid latency increase. Notice that the upper limit shown in this test would also
be the upper limit in case we would have employed database transactions on a fully
consistent relational database instead of our domain-specific scheme for concurrency
control as described in Section 6.2.3. Our goal is to scale beyond this limit, which
these databases cannot.

Centralized coordinator, multiple worker machines

In order to surpass the limitations of the previous deployment, we can employmultiple
machines. Therefore, in a second deployment, we evaluate the behavior of a centralized
coordinator that manages a set of 1 up to 10 worker machines, each hosting 4 workers
(as was illustrated in Figure 6.6b). Each worker machine has 2 CPUs and also hosts a
local replica of the attribute database. Because the throughput and latency behave
similarly to Figure 6.11, we here focus on the maximal throughput of the system.

Figure 6.12 illustrates the resulting maximal throughput for an increasing number of
worker machines and a coordinator hosted on a machine of 2, 4 and 8 CPUs. As shown,
the maximal throughput initially grows for an increasing number of worker machines,
but eventually reaches an upper limit. In this test, the upper limit is approximately
2800 requests/second for a coordinator with 2 CPUs and 4600 requests/second for 4
CPUs. For 8 CPUs, our tests are not conclusive whether an upper limit has already
been reached for 10 worker machines.

Conclusion. This test demonstrates that our system can be scaled over the limits
of a single machine supporting thousands of requests per second, but that a central
coordinator still has an upper limit to scalability. In order to address this, the
coordination should be distributed as well, which is the reason why we designed the
distributed coordinator in Section 6.3.4. We evaluate the behavior of this distributed
coordinator next.

164 CONCURRENT EVALUATION OF ACCESS CONTROL POLICIES

1 2 3 4 5 6 7 8 9 10
Number worker machines

0

1000

2000

3000

4000

5000

T
h
ro

u
g
h
p
u
t

(r
e
q
u
e
st

s
p
e
r

se
co

n
d
) 2 CPUs 4 CPUs 8 CPUs

Figure 6.12: The maximal throughput of a centralized coordinator deployed on a
machine with varying number of CPUs and serving a growing number of worker
machines of each 2 CPUs and each hosting 4 workers.

Distributed coordinator

In a third and final deployment, we evaluate the behavior of a group of distributed
coordinators deployed on individual machines (as was illustrated in Figure 6.8c). Each
machine has 2 CPUs and hosts 4 workers and a local replica of the attribute database.

Figure 6.13 illustrates the resulting maximal throughput for an increasing number of
distributed coordinators. As shown, this throughput grows with the increasing
number of coordinators. The increase of throughput is less than the maximal
capacity of a single machine, e.g., from 898 requests/second for 1 coordinator to
1232 requests/second for 2 coordinators. This can be explained by the same reasoning
as the increasing but bounded latency in Section 6.4.2 and the fact that once there are
multiple coordinators, a part of their capacity is used for the intermediate messages.
However, the resulting throughput is in the same order of magnitude as the previous
deployment and most importantly, does not show an upper limit for at least 10
machines and 40 workers. This illustrates the horizontal scalability of our scheme.

Overall conclusion. To conclude, this whole evaluation verifies that our scheme
for concurrency control is able to scale out to a large number of multi-core machines
while incurring an asymptotically bounded latency overhead. This result was achieved
by leveraging the domain-specific structure of a policy evaluation. The three different
deployments in our evaluation support increasingly large throughputs and scalability,
but are also increasingly complex. However, because the interface to the application
is the same for all deployments, our system allows to migrate from the least complex
to the most complex deployment when the application grows. As such, we believe
that this evaluation demonstrates that our scheme can become an important enabler

DISCUSSION 165

1 2 3 4 5 6 7 8 9 10
Number distributed coordinators

0

1000

2000

3000

4000

T
h
ro

u
g
h
p
u
t

(r
e
q
u
e
st

s
p
e
r

se
co

n
d
)

Figure 6.13: Themaximal throughput of a growing number of distributed coordinators,
each located on a machine of 2 CPUs and each managing 4 workers.

for enforcing history-based policies (and access control policies in general) in realistic
and large-scale applications.

6.5 Discussion

In this chapter, we presented a scheme for concurrency control specifically for the
evaluation of access control policies and demonstrated that it can scale out while
incurring only a limited and bounded latency overhead. In this section we want to
highlight the work of several other authors that have influenced this work in addition
to the work already mentioned in the previous sections. Afterwards, we discuss other
possible applications of concurrency and distribution complementary to this work,
the need to take into account failure as future work and the vague border between
application logic and access control logic.

Related work. This work builds on previous work on distributed policy evaluation
of several other authors. For example, Chadwick [62] was one of the first to describe a
distributed policy decision point with coordination using attribute updates specified in
obligations, similar to this work. Alzahrani et al. [31] extend this into a decentralized
network of policy decision point peers. Both however neglect the concurrency issues
addressed by this work. Other authors do take these issues into account. For example,
Dhankhar et al. [92] address these with locking, but report on policy evaluation times
of seconds. This fortifies our choice not to opt for this approach. More recently,
Kelbert and Pretschner [130] discuss a decentralized system for policy evaluation and
build on the underlying database for concurrency control. For scalability, they employ
Cassandra1, which however does not support transactions over multiple attributes as
required by policy evaluation (see Section 6.2.3). Finally, Janicke et al. [125] propose a

166 CONCURRENT EVALUATION OF ACCESS CONTROL POLICIES

formal model for the concurrency issues described in this chapter, and Gay et al. [111]
discuss service automata, which can be regarded as policy decision points that can
communicate with each other for coordinated distributed policy evaluation. This
work fits into both theoretical frameworks.

Other applications of concurrency and distribution. This work focused on
applying concurrency and distribution for increasing the throughput of policy
evaluation. However, these techniques can also be employed for other reasons,
such as evaluating a single policy concurrently for lowering the policy evaluation
time or because the required access control data is distributed itself (e.g., [149]).
These applications are complementary to this work as they require different forms
of concurrency control, such as achieving a consistent view on the attributes across
parallel branches of the same policy evaluation in the presence of out-of-band attribute
updates or continuously changing attributes (e.g., time). As such, these applications
pose interesting future directions to complement this work.

Taking into account failure. This chapter focused on addressing security issues
that stem from concurrency in policy evaluation in the context of distributed systems.
In addition to concurrency, distribution also introduces the need to take into account
failure of parts of the system, especially if a system should consist of a large number
of machines. Therefore, in order to achieve feasible scalable policy evaluation, taking
into account failure is an important part of future work.

Other authors have also focused on the impact of failure on access control. For
example, both Crampton et al. [74] and Tsankov et al. [199] formally discuss how to
correctly handle failures such as an unreachable attribute database on the level of
access control policies, but both still regard the policy decision point as a single and
central component.

For our distributed policy decision point, we have to take into account failure of its
individual components, i.e., of a worker, the centralized coordinator, a distributed
coordinator or of the attribute database. In general, the centralized coordinator is a
single point of failure, which can be addressed by using the distributed coordinator.
Failure of a distributed coordinator and of a worker can be addressed by monitoring
these components and restarting ongoing evaluations, as their state is limited to these
ongoing evaluations. Finally, the attribute database hosts all the access control state
and should therefore be able to survive failure without loss of data using persistence
and replication. Because our separate layer of concurrency control allows to work
with eventually-consistent databases (see Section 6.3.5), we can employ existing
scalable solutions for this (e.g., Cassandra1).

DISCUSSION 167

One aspect of the distributed coordinator that should be handled in more detail
is the redistribution of the subjects and resources for which each coordinator is
responsible. More specifically, a failure of a single distributed coordinator should not
affect the responsibilities of all coordinators as this would lead to large numbers of
incorrect evaluations that have to be restarted. To solve this, we envision shifting from
our current hash function to an existing solution such as the pseudo-random data
distribution function of Ceph [206]. This tactic can then also be used for dynamically
adding new coordinators to the pool at run-time.

Finally, notice that there is an interesting interaction between failure and history-based
policies: the failure of a coordinator after having persisted an attribute update but
before returning the decision to the application can deny a subject from rightful
access to a resource, for example by incrementing the number of watched movies
without actually having permitted the subject. This issue can be addressed by caching
the results of policy evaluations so that the original decision will be given and the
attribute is not updated twice.

Application logic vs access control logic. Finally, as an interesting side result of
this work, we briefly discuss the line between application logic and access control
logic. More specifically, during this work we often debated whether the access control
system should perform the history updates or the application itself. This question
aligns to a broader discussion about the border between application logic and access
control logic.

In earlier access control models such as lattice-based and role-based access control
(see Section 2.2.3), this border between application logic and access control logic
was clear: access control was expressed in access control-specific concepts, such as
security classifications or roles. ABAC however allows to express domain-specific and
application-specific concepts, such as the number of times a user has watched a movie
this month, and recent approaches such as relationship-based access control [78]
further blur this border.

History-based policies and concurrency control are an interesting argument in this
discussion. On the one hand, one can debate that the history is updated by the
application itself, especially in case of domain-specific concepts such as the number
of movies seen by a user in P2, as these are often required by the application itself for
reasons other than access control, such as movie recommendations for users. Another
approach is to update the history information implicitly, for example using logs or
provenance data as a source of history data (as recently suggested by Nguyen et
al. [169]). However, in both approaches, the transactions for access control would
span both access control code and application/logging code, which are possibly located
on different machines (leading to distributed transactions that also span multiple

168 CONCURRENT EVALUATION OF ACCESS CONTROL POLICIES

abstraction layers) and which are supposed to be decoupled as much as possible in
the approach of policy-based access control.

This illustrates that concurrency control is an aspect of access control that forces us
to make a concrete distinction between application logic and access control logic for
correctness and feasibility. In this work, we clearly argue that the access history (or
at least the part of it relevant to access control) is best managed by the access control
system itself and explicitly represented in the access control policies. If, however, the
application also requires this data, it can be replicated in the access control system or
the separate layer for concurrency control can temporarily cache updated attributes
as described in Section 6.3.5, which demonstrates the wide applicability of our system.

6.6 Conclusion

This chapter presented a concurrency control scheme specifically for the evaluation of
access control policies. This work is motivated by the need to enforce access control
policies on large-scale distributed applications such as SaaS applications, in which
the policies have to be evaluated concurrently and distributedly as well. However,
for certain classes of policies such as history-based policies, concurrency can be
exploited to gain elevated access. By leveraging the specific structure of a policy
evaluation, our concurrency control scheme effectively prevents such incorrect access
decisions and is able to scale to a large number of machines while incurring only
limited and asymptotically bounded latency overhead. This result could not have
been achieved by employing more general techniques for concurrency control. As
such, this chapter has taken an important step to applying policy-based access control
to realistic applications in practice.

Chapter 7

Conclusion

This chapter concludes this thesis. We first revisit the contributions of this thesis
in light of the challenges for SaaS access control discussed in Chapter 1. Following
from this, we then discuss a number of valuable directions for future research on
policy-based access control in general. Finally, we wrap up with concluding thoughts.

7.1 Contributions

This thesis focused on access control for Software-as-a-Service (SaaS) applications.
Because of the use of application-level multi-tenancy, SaaS must separate different
tenants in application code. As a result, application-level access control is a crucial
part of SaaS security.

However, SaaS access control is also challenging. For example, in addition to
separating tenants, SaaS access control should also enable each individual tenant to
constrain its own end-users in terms of the structure of its own organization. SaaS
access control should also incur low management overhead for these tenants and
should take into account the limited trust of these tenants in the SaaS provider. Finally,
SaaS access control should be able to securely scale to the number of end-users of a
SaaS application while incurring only limited latency overhead.

In this context, the contributions of this thesis are four-fold:

Contribution 1. Firstly, we presented and evaluated the Amusa access control
middleware for multi-tenant SaaS applications. Amusa enables the provider and

169

170 CONCLUSION

the tenants to express and enforce their specific access rules by building on policy-
based access control with attribute-based policies. In addition, Amusa encapsulates
this functionality in reusable middleware that requires low engineering overhead and
incurs low performance overhead.

Contribution 2. Secondly, we described, evaluated and validated the concept of
federated authorization. Federated authorization externalizes policy evaluation
from a SaaS application. It thereby enables to centralize the overall access control
management of a tenant and enables the tenants to enforce access rules on a SaaS
application without having to disclose these rules nor the data they require. While
there are still challenges to be addressed, the benefits of federated authorization lead
us to believe that it is a key enabler for access control in future federated applications.

Contribution 3. Thirdly, we presented and evaluated the technique of policy
federation. Policy federation automatically decomposes and deploys the policies
of a tenant for a SaaS application so that the parts are evaluated close to the data they
require as much as possible while sensitive access rules or access control data are
kept local to the premises of the tenant. Policy federation was originally designed to
optimize the performance of federated authorization, but more generally applies to
set-ups where a policy is collaboratively evaluated across multiple policy decisions
points.

Contribution 4. Finally, we presented and evaluated a scalable scheme for
concurrency control for policy evaluation. This scheme avoids that concurrency
leads to incorrect decisions when concurrently evaluating policies such as history-
based policies. In addition, by building on the domain-specific structure of a policy
evaluation, this scheme itself is able to scale to a large number of machines while
incurring only a limited and bounded latency overhead.

Validation

An important aspect of each of our contributions is its practical applicability. In
order to achieve this, we validated the work of this thesis in multiple ways. For
example, we validated the potential of federated authorization for collaborative e-
health applications in an e-health research project and presented the results at a
domain-specific e-health conference [90].

Most importantly, this work has been validated by starting from four realistic case
studies: a SaaS application for electronic document processing, a SaaS application
for automated workforce management, a SaaS application for monitoring patients of

REVISITING THE CHALLENGES FOR SAAS ACCESS CONTROL 171

cardiovascular diseases at their homes and a platform for collaborative home care.
Each of these case studies originated from collaborations with industry partners in
research projects (see Section 1.4.1).

Based on these case studies, we identified the requirements and challenges for SaaS
access control. The contributions of this thesis adhere to these requirements and
our prototypes correspond to these case studies. In addition, our contributions were
discussed, validated and refined in collaboration with the involved industry partners.
The results of this process are presented in this thesis.

Evaluation

Another important aspect of our work is its impact on performance. More precisely,
access control should incur low latency overhead on the legitimate use of the (SaaS)
application that it constrains. In addition, access control should be able to scale to
equally large amounts of requests per second as this application.

In order to achieve this, our contributions of policy federation and the concurrency
control scheme are specifically aimed at performance. In addition, all of our
contributions are evaluated in terms of performance. For this, we systematically
developed prototypes and statistically tested these. The code of these prototypes and
the full set of measurements is available on-line (see Appendix D).

In addition to performance, we also employed our prototypes to build practical
experience with the employed technologies and to evaluate the required engineering
effort for incorporating the Amusa middleware in a SaaS application.

7.2 Revisiting the challenges for SaaS access control

Theprevious section summarized the contributions of this thesis. Aswith any research,
the work in this thesis is not complete yet. Each of the previous chapters already
discussed future work specifically for each of our contributions. In this section, we
discuss the limitations of this work for SaaS access control in general (see Chapter 2)
by revisiting the challenges listed in the introduction of this thesis (see Section 1.2).
For clarity, we employ the same structure as Section 1.2 in this discussion.

Functional challenges

Firstly, Section 1.2 highlighted that SaaS access control should separate the tenants in
a SaaS application as well as enable the provider to constrain its tenants and enable

172 CONCLUSION

these tenants to constrain their end-users. The Amusa middleware supports this
functionality, but purely from a functional perspective, so do state-of-practice SaaS
applications. As we will discuss next, our contributions and limitations mainly lie in
the non-functional challenges.

Non-functional challenges frommulti-tenancy

On top of the functional challenges for SaaS access control, Section 1.2 highlighted
several non-functional challenges. A first set of such challenges originates from
the usage of application-level multi-tenancy in SaaS applications. Firstly, multi-
tenancy requires to be able to modify access rules for an application without having
to recompile or restart this application. Secondly, every tenant wants to be able to
enforce access rules specific to its own domain and organization, which leads to a
variability challenge for access control.

In this work, we addressed the former challenge by opting for policy-based access
control. This technology enables both the access control data as well as the access
rules themselves to vary per tenant and to modify these without having to recompile
or restart the application. In addition, we opted for attribute-based policies, which
enables the tenants to express a wide variety of access rules. As such, this work
effectively demonstrates that the challenges from multi-tenancy can be addressed
based on these technologies.

However, there are still limitations to our approach in order to apply it in practice.
For example, this work showed that policy-based access control comes with a non-
negligible performance overhead. In our case, this performance overhead mainly
stemmed from having to fetch attributes during policy evaluation. In response,
we developed and discussed techniques that can lower this impact. If needed, this
overhead can even be avoided completely by only employing attributes that are already
known when the access decision is needed or that can be cached. This approach
would provide the benefits of policy-based access control without its performance
overhead at the cost of limiting the rules that can be expressed. Further research is
required to investigate the extent of these limitations in practice.

Next to the performance impact however, there are also more fundamental limitations
to our approach. For example, while attribute-based access control enables tenants to
express a wide variety of access control concepts including domain-specific concepts,
they still do not suffice to express some fundamental access rules (this is further
discussed in Section 7.3.3). Moreover, Amusa currently only supports to enforce
policies on individual requests for individual resources. As a result, Amusa for now
fails to enforce policies on, for example, database queries that return multiple results.
Additionally, in terms of low engineering overhead, Chapter 3 concluded that the
effort to incorporate Amusa in an application is moderate to low. However, here we

REVISITING THE CHALLENGES FOR SAAS ACCESS CONTROL 173

assumed that the attributes of subjects and resources are readily available somewhere
in the infrastructure of the organization. This in turn requires a structured access
control culture in the organization, which may pose a hurdle for the adoption of this
technology in large and complex organizations with legacy infrastructure. All of these
challenges require future research. However, these are not limitations of our approach
per se, but rather limitations of the current state of policy-based access control in
general. Based on these limitations, we discuss future directions for research on
policy-based access control in Section 7.3.

Non-functional challenges from the large scale of SaaS applications

A second set of non-functional challenges for SaaS access control originates from
the large scale of SaaS applications. In this regard, Section 1.2 discussed that the
large number of tenants requires SaaS access control to provide self-management
to these tenants, but that this self-management should still be guaranteed secure.
Additionally, on a more technical level, Section 1.2 discussed that the large scale of
SaaS applications challenges performance. More precisely, SaaS access control should
support a high throughput of access decisions while each decision is reached with
low latency. To achieve this, SaaS access control should amongst others also function
correctly in the context of a scalable distributed infrastructure.

With respect to the challenge of secure self-management, the Amusa middleware
demonstrated that the technology of policy-based access control with tree-structured
policies can enable tenants to autonomously specify their own access rules while
the policy trees guarantee the security properties of the end result. With respect
to the challenge of scalable access control, this thesis focused on scaling out policy
evaluation because of our focus on policy-based access control. More precisely, we
defined a concurrency control scheme to address the possible concurrency issues
when evaluating access control policies.

Again, there are limitations to our approach in order to apply it in practice. Firstly,
with respect to self-management, our approach is limited by the fact that it is currently
still challenging and cumbersome to write a correct policy for a certain application.
Two reasons for this are that there is no overall view on which resources, actions
and attributes an application supports and that there is only limited tool support for
policy editing. Additionally, while the current policy languages still do not support
some basic business rules, these languages are already hard to use for non-expert
users. Again, these limitations are not limitations of our specific approach, but of
policy-based access control in general.

Secondly, with respect to scalable access control, our approach is limited by the focus
on concurrency control. While this focus does address a fundamental challenge in
scaling out policy evaluation, this is not the only challenge to address. For example,

174 CONCLUSION

next to concurrency, distribution also introduces the need to take into account failure
of parts of the system, which has not been incorporated into our approach yet. This
is discussed in more detail in Section 6.5. Another limitation of our approach is that
while we achieve a result that could not have been obtained by generic database
technologies, our approach only applies to the evaluation of policies that involve a
single subject and a single resource. Although every access control policy that we
have encountered in our case studies as well as in literature adheres to this, future
research is required to investigate how this approach can be generalized or at least
transferred to other types of policies if and when such policies come up.

Non-functional challenges from outsourcing

A final set of non-functional challenges for SaaS access control originates from the
fact that SaaS is a form of outsourcing. In this regard, Section 1.2 explained that
tenants do not necessarily trust the provider of a SaaS application completely.

In this context, this thesis focused on enabling tenants to enforce an access control
policy of which they do not want to disclose the data required to evaluate it or the
policy itself. This situation presents itself mostly in privacy-sensitive domains such
as e-health.

While our approach of addressing this challenge by externalizing policy evaluation
from the SaaS application has certain limitations itself (see Chapter 4), there also exist
other trust requirements that we did not address. For example, the tenant still has to
trust the provider that its policies are correctly enforced by the SaaS provider to every
request to this application. In addition, the tenant still has to trust the SaaS provider
that its data has not been read or tampered with by an attacker or by the provider
itself. These challenges are currently in investigation by other researchers, e.g., by
encrypting the data of the tenant before transmitting it to the provider in order to
guarantee integrity or confidentiality. Future research is required to see how their
work can be integrated with ours.

Additional concerns: low performance, management and engineering overhead

In addition to the functional and non-functional requirements discussed above, we also
took into account the additional concerns that the access control techniques designed
in this thesis should impose limited latency overhead, management overhead and
engineering overhead. As such, we designed our contributions with these concerns
in mind and evaluated these systematically afterwards.

In addition, Amusa was designed specifically to provide efficient incremental access
control management based on attributes. A limitation here is that it has not been

FUTURE DIRECTIONS FOR POLICY-BASED ACCESS CONTROL 175

proven yet that attributes actually facilitate efficient access control management,
tough this belief seems to be growing [123]. Moreover, the technique of federated
authorization was designed to lower the management overhead for an organization
employing multiple SaaS applications by means of centralization. Apart from
the future challenges for the adoption of this technique in practice discussed in
Chapter 4, the limitation of this work is that we have not empirically studied whether
centralization can effectively lower the management overhead, although again this
does align with common belief.

Overall conclusion

The focus of this thesis was to design access control techniques that address the
specific challenges for access control in SaaS. Our approach was to build upon the
existing state-of-the-art technologies of policy-based access control with attribute-
based tree-structured policies and investigate whether and how these techniques can
be applied to address these challenges.

In this regard, our contributions and experience lead us to believe that these
technologies should indeed be able to address the SaaS-specific challenges for access
control. However, our contributions still have their limitations of which the most
fundamental ones are caused by the limitations of these technologies, mainly of policy-
based access control. As such, we believe that the major challenges for policy-based
access control also lead to the major remaining challenges for SaaS access control.
As a result, we see these challenges as the most important directions for follow-up
research to this thesis and we discuss them in the next section.

7.3 Future directions for policy-based access control

Theprevious section discussed the limitations of this work in the context of SaaS access
control by revisiting the challenges identified in Chapter 1. We believe that some of
these limitations are not specific to our approach, but are fundamental challenges
to policy-based access control as a whole. These challenges have to be addressed in
order to successfully apply this technology in practice, also outside the scope of SaaS.

In this section, we discuss the most important of these challenges as tracks for future
research: investigating the semantical interface between policies and an application,
applying policies to database queries and providing supporting tools. In addition,
we discuss the link between audit and authorization as an interesting opportunity
for future research. All of these tracks of future research fit into a larger view on
policy-based access control, which we discuss in the end.

176 CONCLUSION

7.3.1 Investigating the semantical interface between policies and
applications

A first major and fundamental open challenge for policy-based access control lies
in the interface between policies and the application on which they are enforced.
More precisely, policy-based access control aims to externalize authorization, i.e.,
policy evaluation, from an application so that the access rules can be changed without
having to change the application code. The current state of policy-based access
control achieves this. However, an access control policy should still reason about the
application that it constrains. For example, in terms of attribute-based access control,
the editor of a policy should know which types of resources an application provides,
which actions these support and which attributes these contain. This knowledge is
required to specify a correct policy, e.g., one that only employs existing attributes,
and to specify a complete policy, i.e., one that covers all types of resources and all
actions supported by an application. We call this information the semantical interface
between the policy and the application.

Currently, technologies such as XACML require this information to be communicated
through documentation. As such, there is currently no way to verify whether a policy
covers all actions on all types of resources of the application and a simple typo can
lead to an incorrect attribute statement in a policy that will only be detected when
evaluating this policy at run-time. This makes it still challenging and cumbersome
to write a correct policy for a certain application. As such, the challenge for policy-
based access control is to develop techniques that facilitate correct and simple policy
specification but also maintain the decoupling of policies from application code.

A possible solution to this problem is to introduce a new software artifact, e.g., a model
of the structure of the resources present in an application, their supported actions and
their provided attributes. Amongst others, this model can then be used in a policy
editor to check the correct types and names of the employed resource attributes and
to check whether the policy provides a decision for every action on every type of
resource. Ideally, this model does not introduce yet another software artifact to be
maintained by the developers of an application, but should be derived from existing
artifacts such as architectural diagrams, interface definitions or annotations in code.
A first step towards such a model has already been explored by Verhanneman et
al. [201] based on aspect-oriented programming, an approach that we can build upon.

In extension, this approach can also be applied to an organization that employs one
or more applications. More precisely, any organization has a certain structure of
its members, e.g., a certain hospital can operate general practitioners, specialists,
nurses and supporting staff, these can be organized in teams, departments and
floors, each nurse has his or her own shift hours etc. This structure determines the

FUTURE DIRECTIONS FOR POLICY-BASED ACCESS CONTROL 177

Figure 7.1: Our vision on simplifying the specification of a policy for a certain
application and organization: for achieving correctness and completeness checking,
this policy should be based on a model of the resources and actions in the application
and a model of the subjects in the organization.

structure of the subjects of an organization and their attributes. As such, the policy
of a certain organization for a certain application in essence maps this structure of
subjects to the structure of resources provided by the application in order to determine
who is permitted to perform which actions on which resources in which conditions
(this vision is illustrated in Figure 7.1). Because this structure of the subjects of an
organization remains constant across the applications that the organization employs,
it is an interesting idea to make this structure concrete in a software artifact similar
to the resource model of an application described before. This could further ease the
burden of writing a correct access control policy for a certain application.

Our recent work on policy reuse [89] provides a first step towards expressing these
resource and subject models. However, we have also learned that the interface
between the application and the organization that employs it is more fine-grained
than discussed before. One reason for this is that an application commonly also makes
assumptions on the structure of its users, e.g., that each user has an e-mail address
for the e-Docs application or that there are patients and supervising physicians in the
patient monitoring application. As such, more research is required to address this
fundamental challenge.

7.3.2 Applying policies to database queries

A second open challenge for policy-based access control is applying policies to non-
request-response paradigms. More specifically, policies are now mainly enforced on
individual requests to an application that each represent a single action on a single
resource. Examples of these actions are “send a document”, “view the status of a

178 CONCLUSION

patient” or “update the progress of a task”. In this case, the authorization question
is “Is this subject permitted to perform this action on this resource?”. As such, the
policy is evaluated for this specific request and a decision is returned.

However, some types of applications and some operations in certain applications do
not align to this paradigm. An important instance of such operations is searching
in a database and listing the results. For example, in the case of e-Docs, a common
operation is that a user views a collection of documents such as the documents in
his or her inbox, the documents of a customer for which he or she is responsible
or the documents that belong to a project in which he or she participates. As such,
listing these documents entails a search query in a database of potentially millions
of documents and the result should only contain documents that match the query
and that the subject is permitted to access. In the approach of policy-based access
control, the latter is specified in policies, which means that policies should somehow
be enforced on database queries.

A straight-forward approach to enforce access control policies on a database query is
to perform the query without taking into account the policy and afterwards evaluate
the policy for every result of the query to filter out denied results. It is clear however
that this brute-force approach will not provide suitable performance because of the
overhead of fetching too many entries from the database and then having to evaluate
the policy for every such entry. As such, more efficient techniques for enforcing
access control policies on database queries are required.

Because many common applications employ operations such as the examples above,
we believe that this challenge is a second challenge that is fundamental to the
successful adoption of policy-based access control. Other authors have recently
also focused on this challenge. For example, Rizvi et al. [178] investigated the use
of database views for enforcing access control in a transparent way and Jahid et
al. [124] compile XACML policies into access control lists that are natively supported
by some databases. Another interesting tactic is to automatically translate the access
control policies into database queries and merge these with the application query so
that only permitted entries are returned. The advantages of this tactic are that no
specialized functionality is required from the underlying database. An open question
for this tactic however is whether an access control policy can fully be translated into
a database query and which information is required about the database in order to
automate this process. We believe that this poses an interesting and important track
for future research.

7.3.3 Supporting tools and technologies

In addition to the challenges discussed before, we also identified the need for tools and
technologies that support policy-based access control. While we regard the previous

FUTURE DIRECTIONS FOR POLICY-BASED ACCESS CONTROL 179

challenges as more fundamental to the approach of policy-based access control, we
do believe that these tools and technologies are essential to its adoption in practice
and also pose interesting research challenges.

Expressive policy languages

A first required technology is a policy language that actually enables us to express the
access rules that we want to express. More specifically, we require a policy language
that is more expressive than the current attribute-based languages such as XACML.
As explained in Chapter 2, this thesis employs attribute-based access control because
attributes enable us to express a wide variety of access control concepts. However,
while attributes support far more access control concepts than previous models, it still
does not support some basic rules from our case studies such as “a physician can only
access data of patients whom he treated in the last six months”. In terms of attributes, this
rule would require an attribute such as patients_treated_in_last_6_months,
which actually encodes an access rule in an attribute. As a result, changing this rule
to the last 7 months requires an attribute to be changed, which violates the separation
between access rules and access data.

As explained in Section 2.2.3, new access control models are currently being developed,
amongst others in response to this problem. One recent and advanced model that
we especially believe in is the model of Entity-based access control (EBAC), which
expresses access rules in terms of the entities in an application. EBAC thereby unifies
attribute-based access control and the recent notion of relationship-based access
control [61, 104, 66]. We have recently extended STAPL to support tree-structured
entity-based policies [52], but more research is required to validate the potential of
this model and design a complete and easy-to-use supporting policy language.

User-friendly policy languages

In addition to a more expressive policy language, our work also identified the need for
a more user-friendly policy language. More specifically, the experience of employing
XACML in our own prototypes and explaining this technology to industry partners
in research projects shows that this language has a steep learning curve and is overall
hard to use.

A first cause for this is the use of XML, which is not easy to read or write for humans
and leads to large and verbose policies. As explained in Section 2.3.1, possible solutions
to this problem are the use of graphical user interfaces to generate XACML policies,
the use of a more user-friendly policy language to generate XACML policies and the
design of a more user-friendly policy language that can be directly interpreted by

180 CONCLUSION

a policy decision point. The STAPL language [89] follows the latter approach, but
future research is required to show whether this is the most suitable solution.

A second and more fundamental cause for the steep learning curve of XACML are the
rule expressions and policy trees themselves. While these concepts are fairly easy to
apprehend for access control experts with programming experience, our experience
shows that correctly expressing a large policy with multiple detailed rules is still a
challenge for most non-expert users. One possible tactic for addressing this challenge
is to enable the user to specify a policy in a user-friendly format and translate these
rules to a more technical policy language such as XACML or STAPL. Examples of
such formats are UML (e.g, as discussed by Lodderstedt et al. [155]) and natural
language (e.g., as discussed by Shi and Chadwick [188]). Another tactic is to enable
experts to define complex rules and policies as reusable higher-level patterns that
can easily be reused by non-expert users in their policies. We recently investigated
this tactic as an expansion to STAPL [89] and believe that this approach can gravely
simplify policy specification. However, addressing this problem holistically requires a
multi-disciplinary approach involving amongst others security experts, programming
language experts and usability experts.

Policy analysis

In addition to an expressive and user-friendly language for specifying policies, another
important supporting technology is the automated analysis of policies. More precisely,
when specifying policies, questions come up such as “Does this policy cover all actions
in the application?”, “Does this rule conflict with any of the other rules?”, “Which
resources can this subject access?” and “Which subjects can access this resource?”.
Similarly, when updating a policy, the question arises of what the impact is of the
policy change, i.e., “Which additional actions are now permitted to which subjects and
which actions are now denied?”. Discussions with industry partners in our research
projects have pointed out that being able to answer these questions is crucial for the
trust in policy-based access control in practice.

These questions have already been identified in the early work on policy-based access
control andmanagement, e.g., by Sloman [190]. As a result, other authors have already
focused on the challenge of answering these questions in the past. For example, Fisler
et al. [103] encode XACML policies as multi-terminal binary decision diagrams in
order to formally verify properties of the policies and perform change-impact analysis.
Kolovski et al. [135] take a similar approach based on description logic. Additional
research is needed to investigate how these solutions integrate with the work in this
thesis, e.g., the layered policy management of Amusa, and whether these solutions
scale to the amount of subjects and resources in the SaaS applications of our case
studies.

FUTURE DIRECTIONS FOR POLICY-BASED ACCESS CONTROL 181

7.3.4 The link between authorization and audit

Finally, we want to highlight to potential of combining authorization and audit. As
opposed to the previous sections, this is not a fundamental challenge for policy-based
access control, but rather an opportunity to further improve its use.

This thesis focuses on authorization, but authorization is only a part of access control
(see Section 2.1). More specifically, the process of access control is generally divided
into authentication, authorization and audit. Authentication makes sure that the
subject is who he, she or it claims to be, authorization verifies that an authenticated
subject is permitted to perform the requested action before the action is performed
and audit afterwards checks whether a subject performed an action that should have
been denied, for example based on logs.

As such, authorization and audit make up two interesting complementary technologies.
On the one hand, authorization is able to prevent an action if it is not permitted,
but the complexity of the rules that can be enforced is limited because of the tight
performance requirements. On the other hand, audit can employ a far larger set of
access control data and is far less constrained by timing requirements. Audit can
therefore enforce more complex access rules and even search for patterns across
multiple requests, but it is not able to prevent an action from being performed and
therefore requires it to be possible to roll back the action.

As a result of this complementarity, we believe that the combination of authorization
and audit can be very powerful. For example, such a system could be used to enforce
complex access control policies a posteriori while they pose too much performance
overhead for authorization and gradually shift enforcement to a priori authorization as
technology improves. Similarly, audit data could be used to verify the intended effect
of an authorization rule. Although this approach still requires a leap in technology,
e.g., a common policy language for both authorization and audit and semantically
linking the authorization and audit data, we believe that this idea is promising and is
worth working towards in the future.

7.3.5 The complete picture: a viewonpolicy-based access control

The research directions discussed in the previous sections all fit within a broader view
on applying policy-based access control in practice.

In this view (illustrated in Figure 7.2), the access rules that an organization wants to
enforce on the applications that it employs are specified in declarative policies, which
is the core of policy-based access control. Ideally, the organization-wide rules are
specified by security managers of the organization as high-level business rules, in
terms of the structure of the organization (which is represented as a subject model) and

182 CONCLUSION

Figure 7.2: Our view on applying policy-based access control in practice.

by means of a user-friendly policy language. An example of such an organization-wide
rule is “medical professionals are not permitted to access medical data of patients that
have withdrawn consent for them”.

In turn, these organization-wide rules are then refined into more detailed application-
specific access rules that hold for each individual application. This refinement can be
automated by using the resource model provided by each application. For example, the
medical professionals involved in the patient monitoring system of our case study are
physicians and nurses and the medical data in this application are the monitoring data
and status overview. In addition, the resource model and subject model are used to
automatically verify the correctness and completeness of resulting rules. Depending
on their complexity and size, the application-specific access rules are then enforced
by means of either authorization or audit. Afterwards, the audit data is also used
to automatically analyze whether the access rules enforce the behavior intended by
the security managers. This approach could further be extended to derive security
policies of even lower levels in the infrastructure, such as firewall configurations.

In summary, this view on policy-based access control employs policies as software
artifacts that enable automation for more efficient, more scalable and more correct
access control management. This view aligns with visions articulated by other authors
as early as 1994 [190], but as the previous sections explained, there are still challenges
to be addressed before it can be made reality.

CONCLUDING THOUGHTS 183

7.4 Concluding thoughts

This thesis focused on the problem of access control for SaaS applications. These
applications are characterized by their architectural choice for application-level multi-
tenancy, their scale and the fact that they are a form of outsourcing from the point of
view of the tenants. As such, this thesis presented and evaluated techniques for access
control that enable the provider and the tenants to enforce their specific access rules
on the common SaaS application, that lower the management overhead for a tenant,
that incur low performance overhead, that take into account the limited trust of a
tenant in the provider and that are able to scale out together with the SaaS application.

This work fits into the larger field of access control and access control management, a
field often coined as Identity and Access Management (IAM). This field is currently
witnessing a large interest in industry for several reasons. Amongst others, as an
increasing amount of business information and processes is digitized, being able to
express and enforce who is permitted to access what is a crucial part of security. At
the same time, organizations grow both in size and complexity, consisting of diverse
types of employees that are structured in departments, teams and projects that span
multiple regions and sectors. This makes it more challenging to express who can
access what, even within the scope of only a single organization. Moreover, businesses
are increasingly becoming specialized, as for example shown by the O’CareCloudS
project [15] for the e-health sector. As a result, business relationships also grow in
complexity. Specifically for IT, the current evolution towards cloud computing and
SaaS further stresses the need for access control because business data is increasingly
often stored and processed outside of the physical premises of an organization and
“traditional” security tools such as firewalls cannot protect this data anymore.

In order to cope with these trends, new access control techniques are being developed
at an increasingly fast pace. Because of the advent of professional web applications for
example, we have seen the evolution towards federated authentication with initiatives
such as OpenID [6] and SAML [2]. Afterwards, OAuth [122] took the first step towards
federated authorization and is now paving the way for more complex protocols such
as OpenID Connect [180] and UMA [23]. Also outside the scope of web applications,
organizations are transitioning toward centralized user management and some are
pioneering by taking the step towards attribute-based management of their members
and data [123]. Externalized authorization is more and more regarded as the next step
towards efficient access control management, which eventually can lead to third-party
services for centralized authorization management.

The results presented in this thesis fit within these evolutions with a focus on efficient
access control for SaaS. In addition, the basic technologies employed in this thesis, i.e.,
attribute-based access control and policy-based access control, are potential answers
to the challenge of efficient access control management in an increasingly complex

184 CONCLUSION

environment. However, these technologies are just now starting to be applied in
practice and it will still take a long time before we can fully apply the results of access
control research in practice for the reasons outlined above. In this regard, this thesis
has developed and evaluated techniques that again take us one step closer towards
successfully applying these technologies and achieving efficient large-scale access
control management in practice.

Appendix A

Example of an access control
policy

Chapter 2 mentioned that XACML and STAPL allow to express a wide spectrum
of access control concepts, including domain-specific concepts. This appendix
demonstrates how some of the most prominent of these concepts can be expressed
using an example policy from the eDocs case study (see Section 1.4.1).

The example policy is shown in Listing A.1. This policy employs the syntax of
STAPL. As shown, STAPL supports policy trees built from Rules and Policies. The
former specify attribute-based conditions using the keyword iff, the latter specify an
attribute-based target using the keyword when and a combination algorithm using the
keyword apply. Both can also specify obligations using the keyword performing.

Using these primitives, the following access control concepts can be expressed:

Identity-based policies. The most basic access control concept is permitting or
denying specific subjects to access specific resources. XACML and STAPL support
this by using the identifiers of the subject and the resource. For example, lines 5
and 6 of Listing A.1 contain an identity-based rule that specifically permits subject
“user123” to view resource “docABC”.

Permission-based policies. Secondly, XACML and STAPL support to reason about
permissions assigned to subjects by using a multi-valued attribute. For example, lines
25 and 26 of Listing A.1 deny an account manager to view a document if he or she
does not have the permission “read_document”.

185

186 EXAMPLE OF AN ACCESS CONTROL POLICY

1 Policy := when (r e s ou r c e . type == ‘ document ’)
2 apply F i r s t A p p l i c a b l e to (
3 / / F o r v i ew ing document s
4 Policy := when (a c t i o n . i d == ‘ view ’) apply F i r s t A p p l i c a b l e to (
5 Rule := permit i f f (s u b j e c t . i d == ‘ u s e r 123 ”
6 and r e s ou r c e . i d == ‘ docABC ’)
7 / / F o r h e l p d e s k o p e r a t o r s
8 Policy := when (‘ h e l pde sk_ope r a t o r ’ in s u b j e c t . r o l e s)
9 apply DenyOverr ides to (

10 Rule := deny i f f (not (environment . now >= 08 : 0 0
11 and environment . now <= 17 : 0 0)) ,
12 Rule := deny i f f (not (s u b j e c t . l o c a t i o n == ‘ B ru s s e l s ’)) ,
13 / / Dynamic s e p a r a t i o n o f duty
14 Policy := when (r e s ou r c e . owner == ‘ Bank A ’)
15 apply Pe rm i tOve r r i d e s to (
16 Rule := permit i f f (not (‘ Bank B ’ in s u b j e c t . h i s t o r y))
17 performing (append (‘ Bank A’ , s u b j e c t . h i s t o r y)) ,
18 Rule := deny
19) , / / t h e dua l p o l i c y f o r Bank B h e r e
20 Rule := permit
21) ,
22 / / F o r a c c o un t managers
23 Policy := when (‘ account_manager ’ in s u b j e c t . r o l e s)
24 apply DenyOverr ides to (
25 Rule := deny i f f (not (
26 ‘ read_document ’ in s u b j e c t . p e rm i s s i on s)) ,
27 Rule := deny i f f (not (
28 r e s ou r c e . owner_org in s u b j e c t . a s s i gn ed_ cu s t ome r s)) ,
29 Rule := permit
30) performing (
31 l og (s u b j e c t . i d + ‘ was den i ed ’ + r e s ou r c e . i d) on Deny
32) ,
33 / / F o r r e c i p i e n t s
34 Policy := when (‘ r e c i p i e n t ’ in s u b j e c t . r o l e s)
35 apply DenyOverr ides to (
36 Rule := deny i f f (not (s u b j e c t . i d == r e s ou r c e . owner)) ,
37 Rule := permit
38)
39 . . . / / r u l e s f o r o t h e r t y p e s o f s u b j e c t s
40) ,
41 / / F o r s e n d i n g document s
42 Policy := when (a c t i o n . i d == ‘ send ’)
43 apply Pe rm i tOve r r i d e s to (
44 / / S end i ng quo ta
45 Rule := permit i f f (s u b j e c t . nb_sen t_ th i s_month < 1000)
46 performing (i nc rement (s u b j e c t . nb_sen t_ th i s_month)) ,
47 Rule := deny
48) ,
49 . . . / / r u l e s f o r o t h e r a c t i o n s
50)

Listing A.1: An example of a STAPL policy that combines multiple access control
concepts in the context of the eDocs system for electronic document processing.

EXAMPLE OF AN ACCESS CONTROL POLICY 187

Role-based policies. Thirdly, XACML and STAPL support to reason about roles,
again using a multi-valued attribute. For example, lines 8, 23 and 34 of Listing A.1
each check the roles of the subject in the target of a policy. Hierarchical roles
can then be emulated by flattening the hierarchy into subject.roles. Similarly,
checking whether the subject has a certain permission in one of his or her roles
can be emulated by providing the list of all permissions of the subject from his or
her roles as subject.permissions, which can be used similarly to the permission-
based policy above. While STAPL does provide more extensive primitives to reason
about hierarchical roles [89], these are not employed in this thesis in order to remain
compatible with XACML.

Group-based policies. XACML and STAPL also support to reason about groups,
which is similar to roles. Because of this similarity, Listing A.1 does not show a
specific example of groups.

Ownership-based policies. XACML and STAPL also support to reason about
ownership by using the identifier of the subject and the owner of a resource. For
example, line 36 of Listing A.1 denies a recipient to view any other document than
his or her own documents.

Domain-specific ownership-based policies. XACML and STAPL also support
domain-specific forms of ownership using similar attributes as illustrated before.
For example, lines 27 and 28 of Listing A.1 deny an account manager to access
documents of customers other than the ones that are explicitly assigned to him or her.
In this case, the concept of documents is specific to the application and the concept
of assigned customers is specific to the organization.

Time-based policies. XACML and STAPL also support to reason about the date and
time by using an environment attribute. For example, lines 10 and 11 of Listing A.1
deny a helpdesk operator to view documents outside of shift hours.

Location-based policies. XACML and STAPL also support to reason about the
location of a subject. For example, line 12 of Listing A.1 denies a helpdesk operator to
view a document from outside the head office in Brussels.

Obligations. XACML and STAPL also support obligations, which can be used to
execute an operation in conjunction with enforcing the access decision. For example,

188 EXAMPLE OF AN ACCESS CONTROL POLICY

lines 30 and 31 of Listing A.1 specify to write out a log in case an account manager
was denied access to a document.

History-based policies. XACML and STAPL also support history-based policies
by using obligations to update an attribute that contains the history. For example,
lines 45 to 46 of Listing A.1 specify that each user can only send 1000 documents
each month. In this case an obligation specifies to increment the attribute
subject.nb_sent_this_month on Permit. Chapter 6 goes deeper into these
history-based policies.

Dynamic separation of duty. As a special case of history-based policies, XACML
and STAPL also support dynamic separation of duty policies or Chinese wall
policies [56]. For example, lines 14 to 19 of Listing A.1 deny a helpdesk operator to
access documents of Bank B once he or she has had access to documents of Bank A and
vice versa. In this case, the subject.history attribute contains the organizations of
which the helpdesk operator has viewed documents. Again, this attribute is updated
by means of an obligation.

Combinations of the above. Finally, the power of XACML and STAPL lies in the
fact that any of the concepts demonstrated before can be combined into a single policy
by using policy trees. Listing A.1 illustrates this nicely. In full, the complete policy for
the eDocs case study combines over 40 different rules and employs over 30 different
attributes. Similarly, the policy for the patient monitoring system combines over 20
different rules. The resulting policies employ all of the concepts illustrated above,
which illustrates the need for complex and fine-grained access policies as discussed
in the challenges for SaaS access control (see Section 1.2).

Appendix B

Extensions to XACML for
federated authorization

This appendix lists and illustrates the extensions to XACML 2.0 performed for
supporting federated authorization as discussed in Section 4.3.3.

B.1 Remote Policy Reference

TheXML schema for the <RemotePolicyReference> element is given in Listing B.1,
an example of its usage is given in Listing B.2.

<xs:element name=”RemotePolicyReference”
type=”RemotePolicyReferenceType”/>

<xs:complexType name=”RemotePolicyReferenceType”>
<xs:element ref=”xacml:Description” minOccurs=”0”/>
<xs:element ref=”xacml:Target” minOccurs=”0”/>
<xs:element ref=”xacml:Obligations” minOccurs=”0”/>
<xs:attribute name=”PolicyId” type=”xs:string”

use=”required”/>
</xs:complexType>

Listing B.1: XML schema of the new <RemotePolicyReference> element.

189

190 EXTENSIONS TO XACML FOR FEDERATED AUTHORIZATION

<RemotePolicyReference PolicyId=”tenantA”>
<Description> The policy for tenant A. </Description>
<Target>
<Resources>
<Resource>
<ResourceMatch MatchId=”string-equal”>
<AttributeValue DataType=”string”>

A
</AttributeValue>
<ResourceAttributeDesignator
AttributeId=”resource:owning-tenant”
DataType=”string”/>

</ResourceMatch>
</Resource>
</Resources>

</Target>
</RemotePolicyReference>

Listing B.2: Example usage of the <RemotePolicyReference> element. Names-
paces are not shown in full for readability reasons.

B.2 Obligation targets

The XML schema for the extended <Obligation> element is given in Listing B.3, an
example of its usage is given in Listing B.4.

<xs:element name=”Obligation” type=”xacml:ObligationType”/>
<xs:complexType name=”ObligationType”>

... <!-- Id, attribute assignments and effect -->
<xs:attribute name=”FulfillWhere” type=”LocationType”

use=”optional” default=”local”/>
</xs:complexType>
<xs:simpleType name=”LocationType”>

<xs:restriction base=”xs:string”>
<xs:enumeration value=”local”/>
<xs:enumeration value=”remote”/>

</xs:restriction>
</xs:simpleType>

Listing B.3: XML schema of the extended <Obligation> element. For the
specification of the original element we refer to Section 5.45 of [165].

OBLIGATION TARGETS 191

<Obligation ObligationId=”log access” FulfillOn=”Permit”
FulfillWhere=”local”>
<AttributeAssignment AttributeId=”log:access”

DataType=”string”>
<SubjectAttributeDesignator

AttributeId=”subject:subject-id”
DataType=”string”/>

</AttributeAssignment>
</Obligation>

Listing B.4: Example usage of the extended <Obligation> element. Namespaces
are not shown in full for readability reasons.

Appendix C

Correctness of the policy
transformations of Chapter 5

This appendix proves the correctness of the policy transformations presented in
Chapter 5 by means of their truth tables. Before that, we provide the decision tables
of the combination algorithms PermitOverrides, DenyOverrides and FirstApplicable
for clarity.

C.1 Combination algorithms

In this section, we describe the behavior of the combination algorithms PermitOver-
rides, DenyOverrides and FirstApplicable by means of their decision tables. Notice
that the decision tables are shown for two children. This does not limit the general
applicability of these decision tables as any combination of more than two children
has an equivalent binary representation, as shown by transformations T4, T5 and T6
of Chapter 5.

C.1.1 PermitOverrides

PermitOverrides evaluates to Permit if one of its children returns a Permit. If not, it
evaluates to Deny if one of its children returns Deny and NotApplicable otherwise.
More specifically, the behavior of PermitOverrides(PA,PB) is as follows:

193

194 CORRECTNESS OF THE POLICY TRANSFORMATIONS OF CHAPTER 5

PA PB PermitOverrides(PA,PB)
Permit Permit Permit
Permit Deny Permit
Permit NotApplicable Permit
Deny Permit Permit
Deny Deny Deny
Deny NotApplicable Deny

NotApplicable Permit Permit
NotApplicable Deny Deny
NotApplicable NotApplicable NotApplicable

C.1.2 DenyOverrides

DenyOverrides evaluates to Deny if one of its children returns a Deny. If not, it
evaluates to Permit if one of its children returns Permit and NotApplicable otherwise.
More specifically, the behavior of DenyOverrides(PA,PB) is as follows:

PA PB DenyOverrides(PA,PB)
Permit Permit Permit
Permit Deny Deny
Permit NotApplicable Permit
Deny Permit Deny
Deny Deny Deny
Deny NotApplicable Deny

NotApplicable Permit Permit
NotApplicable Deny Deny
NotApplicable NotApplicable NotApplicable

C.1.3 FirstApplicable

FirstApplicable returns the first Permit or Deny returned by a child when evaluating
the children in the order in which they are given. If no child returns Permit or
Deny, FirstApplicable returns NotApplicable. More specifically, the behavior of
FirstApplicable(PA,PB) is as follows:

TRUTH TABLES OF THE POLICY TRANSFORMATIONS 195

PA PB FirstApplicable(PA,PB)
Permit - Permit
Deny - Deny

NotApplicable Permit Permit
NotApplicable Deny Deny
NotApplicable NotApplicable NotApplicable

C.2 Truth tables of the policy transformations

Following the behavior of the combination algorithms, we now prove the correctness
of the policy transformations defined in Chapter 5 by means of their truth tables.

C.2.1 Transformation T1

The left-hand side of transformation T1 is:

< T1|T2, CA, [P1...Pn] >

The right-hand side of transformation T1 is:

< true, F irstApplicable, [< T1, CA, [P1...Pn] >,< T2, CA, [P1...Pn] >] >

Let r be the result of applying combination algorithm CA to [P1...Pn], then both
sides behave as follows, thus proving the correctness of this transformation:

T1 T2 Result
True True r
True False r
False True r
False False NotApplicable

C.2.2 Transformation T2

The left-hand side of transformation T2 is:

< Permit, C1|C2 >

The right-hand side of transformation T2 is:

< true, PermitOverrides, [< Permit, C1 >,< Permit, C2 >] >

Both sides behave as follows, thus proving the correctness of this transformation:

196 CORRECTNESS OF THE POLICY TRANSFORMATIONS OF CHAPTER 5

C1 C2 Result
True True Permit
True False Permit
False True Permit
False False NotApplicable

C.2.3 Transformation T3

The left-hand side of transformation T3 is:

< Deny,C1|C2 >

The right-hand side of transformation T3 is:

< true,DenyOverrides, [< Deny,C1 >,< Deny,C2 >] >

Both sides behave as follows, thus proving the correctness of this transformation:

C1 C2 Result
True True Deny
True False Deny
False True Deny
False False NotApplicable

C.2.4 Transformation T4

The left-hand side of transformation T4 is:

< T,PermitOverrides, [P1, P2, P3] >

The right-hand side of transformation T4 is:

< T,PermitOverrides, [< true, PermitOverrides, [P1, P2] >,P3] >

Both sides behave as follows, thus proving the correctness of this transformation:

TRUTH TABLES OF THE POLICY TRANSFORMATIONS 197

T P1 P2 P3 Result
False - - - NotApplicable
True Permit - - Permit
True - Permit - Permit
True - - Permit Permit
True Deny Deny Deny Deny
True Deny Deny NotApplicable Deny
True Deny NotApplicable Deny Deny
True Deny NotApplicable NotApplicable Deny
True NotApplicable Deny Deny Deny
True NotApplicable Deny NotApplicable Deny
True NotApplicable NotApplicable Deny Deny
True NotApplicable NotApplicable NotApplicable NotApplicable

C.2.5 Transformation T5

The left-hand side of transformation T5 is:

< T,DenyOverrides, [P1, P2, P3] >

The right-hand side of transformation T5 is:

< T,DenyOverrides, [< true,DenyOverrides, [P1, P2] >,P3] >

Both sides behave as follows, thus proving the correctness of this transformation:

T P1 P2 P3 Result
False - - - NotApplicable
True Deny - - Deny
True - Deny - Deny
True - - Deny Deny
True Permit Permit Permit Permit
True Permit Permit NotApplicable Permit
True Permit NotApplicable Permit Permit
True Permit NotApplicable NotApplicable Permit
True NotApplicable Permit Permit Permit
True NotApplicable Permit NotApplicable Permit
True NotApplicable NotApplicable Permit Permit
True NotApplicable NotApplicable NotApplicable NotApplicable

C.2.6 Transformation T6

The left-hand side of transformation T6 is:

198 CORRECTNESS OF THE POLICY TRANSFORMATIONS OF CHAPTER 5

< T,F irstApplicable, [P1, P2, P3] >

The right-hand side of transformation T6 is:

< T,F irstApplicable, [< true, F irstApplicable, [P1, P2] >,P3] >

Both sides behave as follows, thus proving the correctness of this transformation:

T P1 P2 P3 Result
False - - - NotApplicable
True Permit - - Permit
True Deny - - Deny
True NotApplicable Permit - Permit
True NotApplicable Deny - Deny
True NotApplicable NotApplicable Permit Permit
True NotApplicable NotApplicable Deny Deny
True NotApplicable NotApplicable NotApplicable NotApplicable

C.2.7 Transformation T7

The left-hand side of transformation T7 is:

< T,PermitOverrides, [P1, P2] >

The right-hand side of transformation T7 is:

< T,PermitOverrides, [P2, P1] >

Both sides behave as follows, thus proving the correctness of this transformation:

T P1 P2 Result
False - - NotApplicable
True Permit Permit Permit
True Permit Deny Permit
True Deny Permit Permit
True Deny Deny Deny

C.2.8 Transformation T8

The left-hand side of transformation T8 is:

< T,DenyOverrides, [P1, P2] >

The right-hand side of transformation T8 is:

TRUTH TABLES OF THE POLICY TRANSFORMATIONS 199

< T,DenyOverrides, [P2, P1] >

Both sides behave as follows, thus proving the correctness of this transformation:

T P1 P2 Result
False - - NotApplicable
True Permit Permit Permit
True Permit Deny Deny
True Deny Permit Deny
True Deny Deny Deny

Appendix D

Overview of the developed
prototypes

A key characteristic of our research approach is that we systematically evaluated our
contributions based on prototypes. As a result, we developed a prototype of each of
our contributions, of which the code is open-source and available on-line:

1. Amusa. The code and a live demo of the prototype of our Amusa middleware
and the eDocs application running on top of this middleware are available at
https://distrinet.cs.kuleuven.be/software/amusa/. These proto-
types are written in Java, employ the Spring 3 Web MVC framework for the
front-ends and employ the SunXACML engine and our STAPL engine for policy
evaluation. More information is given in Section 3.4.2.

2. Federated authorization. The code of our prototype of federated authoriza-
tion is available at http://people.cs.kuleuven.be/~maarten.decat/
doa-trusted-cloud-2013/. This prototype is written in Java and extends
the SunXACML policy evaluation engine. More information is given in
Section 4.4.1.

3. Policy federation. The code of our prototypes of the algorithm for policy feder-
ation and the supporting middleware is available on-line at http://people.
cs.kuleuven.be/~maarten.decat/jisa2013/. These prototypes are both
written in Java and extend the SunXACML policy evaluation engine. More
information is given in Section 5.5.1.

4. Concurrent evaluation of access control policies. The code of our prototype of
our concurrency control scheme for secure concurrent evaluation of access

201

https://distrinet.cs.kuleuven.be/software/amusa/
http://people.cs.kuleuven.be/~maarten.decat/doa-trusted-cloud-2013/
http://people.cs.kuleuven.be/~maarten.decat/doa-trusted-cloud-2013/
http://people.cs.kuleuven.be/~maarten.decat/jisa2013/
http://people.cs.kuleuven.be/~maarten.decat/jisa2013/

202 OVERVIEW OF THE DEVELOPED PROTOTYPES

control policies is available at http://people.cs.kuleuven.be/~maarten.
decat/acsac2015/. This prototype builds upon our STAPL language, is written
in Scala and employs the Akka actor framework for concurrency and distributed
communication. More information is given in Section 6.4.1.

In addition, we also developed an extensive prototype of our STAPL language:

5. STAPL. The code of our STAPL language is available at https://github.
com/stapl-dsl/. STAPL is defined as an internal DSL in Scala and is
supported by an efficient policy evaluation engine. More information is given
in Section 2.3.1.

http://people.cs.kuleuven.be/~maarten.decat/acsac2015/
http://people.cs.kuleuven.be/~maarten.decat/acsac2015/
https://github.com/stapl-dsl/
https://github.com/stapl-dsl/

Bibliography

[1] Health Insurance Portability and Accountability Act.

[2] Security Assertion Markup Language (SAML) v2.0. http://www.
oasis-open.org/standards#samlv2.0, March 2005.

[3] A Guide to Claims-based Identity and Access Control. http://msdn.mi-
crosoft.com/en-us/library/ff423674.aspx, January 2010.

[4] 3-D Secure - Wikipedia, the free encyclopedia. http://en.wikipedia.org/
wiki/3-D_Secure, July 2013.

[5] eXtensible Access Control Markup Language (XACML) Version 3.0. OASIS
Standard (2013).

[6] OpenID Authentication 2.0 - Final. http://openid.net/specs/
openid-authentication-2_0.html, May 2013.

[7] Sun’s XACML Implementation. http://sourceforge.net/projects/
sunxacml/, August 2013.

[8] A next generation federated identity management solution for a regional
ecosystem of media providers (Media ID). https://distrinet.cs.
kuleuven.be/research/projects/MediaID, June 2014.

[9] Chapter 3. Defining Authorization Policies. http://docs.forgerock.org/
en/openam/12.0.0/admin-guide/index/chap-authz-policy.html,
June 2014.

[10] Creating an XACML Policy - Identity Server 4.5.0 - WSO2 Documenta-
tion. https://docs.wso2.com/display/IS450/Creating+an+XACML+
Policy, June 2014.

[11] E-Health Information Platforms (E-HIP). http://distrinet.cs.kuleuven.
be/research/projects/E-HIP, June 2014.

203

http://www.oasis-open.org/standards#samlv2.0
http://www.oasis-open.org/standards#samlv2.0
http://en.wikipedia.org/wiki/3-D_Secure
http://en.wikipedia.org/wiki/3-D_Secure
http://openid.net/specs/openid-authentication-2_0.html
http://openid.net/specs/openid-authentication-2_0.html
http://sourceforge.net /projects/sunxacml/
http://sourceforge.net /projects/sunxacml/
https://distrinet.cs.kuleuven.be/research/projects/MediaID
https://distrinet.cs.kuleuven.be/research/projects/MediaID
http://docs.forgerock.org/en/openam/12.0.0/admin-guide/index/chap-authz-policy.html
http://docs.forgerock.org/en/openam/12.0.0/admin-guide/index/chap-authz-policy.html
https://docs.wso2.com/display/IS450/Creating+an+XACML+Policy
https://docs.wso2.com/display/IS450/Creating+an+XACML+Policy
http://distrinet.cs.kuleuven.be/research/projects/E-HIP
http://distrinet.cs.kuleuven.be/research/projects/E-HIP

204 BIBLIOGRAPHY

[12] Healthcare professional’s collaboration Space (Share4Health). http:
//distrinet.cs.kuleuven.be/research/projects/Share4Health,
June 2014.

[13] IDC Predicts SaaS Enterprise Applications Will Be A $50.8B Market By
2018. http://www.forbes.com/sites/louiscolumbus/2014/12/20/
idc-predicts-saas-enterprise-applications-will-be-a-50-8b\
-market-by-2018/, December 2014.

[14] Namespaces Java API - Google App Engine - Google Developers. https:
//developers.google.com/appengine/docs/java/multitenancy/,
May 2014.

[15] OCareCloudS - Overview projects - iMinds. http://www.iminds.be/en/
research/overview-projects/p/detail/ocareclouds-2, June 2014.

[16] Permission, User Management and Availability for multi-tenant SaaS
applications (PUMA). http://distrinet.cs.kuleuven.be/research/
projects/PUMA, June 2014.

[17] Smart Plug-in Automobile Renewable Charging Services (SPARC). https:
//distrinet.cs.kuleuven.be/research/projects/SPARC, June 2014.

[18] Spring Security - Expression-Based Access Control. http://docs.spring.
io/spring-security/site/docs/3.0.x/reference/el-access.
html, May 2014.

[19] App Engine - Run your applications on a fully-managed Platform-as-a-
Service (PaaS) using built-in services - Google Cloud Platform. https://-
cloud.google.com/appengine/, July 2015.

[20] AWS | Amazon Elastic Compute Cloud (EC2) - Scalable Cloud Hosting.
http://aws.amazon.com/ec2, July 2015.

[21] CRM Software & Cloud Computing Solutions. http://www.salesforce.com, July
2015.

[22] Google Drive - Cloud Storage & File Backup for Photos, Docs & More.
https://www.google.com/drive/, July 2015.

[23] Home - WG - User Managed Access - Kantara Initiative. https:
//kantarainitiative.org/confluence/display/uma/Home, August
2015.

[24] OpenAz Main Page - OpenLiberty.org Wiki. http://www.openliberty.
org/wiki/index.php/OpenAz_Main_Page, August 2015.

http://distrinet.cs.kuleuven.be/research/projects/Share4Health
http://distrinet.cs.kuleuven.be/research/projects/Share4Health
http://www.forbes.com/sites/louiscolumbus/2014/12/20/idc-predicts-saas-enterprise-applications-will-be-a-50-8b\-market-by-2018/
http://www.forbes.com/sites/louiscolumbus/2014/12/20/idc-predicts-saas-enterprise-applications-will-be-a-50-8b\-market-by-2018/
http://www.forbes.com/sites/louiscolumbus/2014/12/20/idc-predicts-saas-enterprise-applications-will-be-a-50-8b\-market-by-2018/
https://developers.google.com/appengine/docs/java/multitenancy/
https://developers.google.com/appengine/docs/java/multitenancy/
http://www.iminds.be/en/research/overview-projects/p/detail/ocareclouds-2
http://www.iminds.be/en/research/overview-projects/p/detail/ocareclouds-2
http://distrinet.cs.kuleuven.be/research/projects/PUMA
http://distrinet.cs.kuleuven.be/research/projects/PUMA
https://distrinet.cs.kuleuven.be/research/projects/SPARC
https://distrinet.cs.kuleuven.be/research/projects/SPARC
http://docs.spring.io/spring-security/site/docs/3.0.x/reference/el-access.html
http://docs.spring.io/spring-security/site/docs/3.0.x/reference/el-access.html
http://docs.spring.io/spring-security/site/docs/3.0.x/reference/el-access.html
https://kantarainitiative.org/confluence/display/uma/Home
https://kantarainitiative.org/confluence/display/uma/Home
http://www.openliberty.org/wiki/index.php/OpenAz_Main_Page
http://www.openliberty.org/wiki/index.php/OpenAz_Main_Page

BIBLIOGRAPHY 205

[25] SELinux Wiki. http://selinuxproject.org/, October 2015.

[26] SEQUOIA - iMinds. https://www.iminds.be/en/projects/2015/03/
11/sequoia, March 2015.

[27] Spring Security. http://projects.spring.io/spring-security/, June
2015.

[28] Alam, M., Zhang, X., Khan, K., and Ali, G. xDAuth: A Scalable and
Lightweight Framework for Cross Domain Access Control and Delegation.
In Proceedings of the 16th ACM Symposium on Access Control Models and
Technologies (New York, NY, USA, 2011), SACMAT ’11, ACM, pp. 31–40.

[29] Alcaraz Calero, J., Edwards, N., Kirschnick, J., Wilcock, L., and Wray,
M. Toward a Multi-Tenancy Authorization System for Cloud Services. Security
Privacy, IEEE 8, 6 (Nov 2010), 48–55.

[30] Alfieri, R., Cecchini, R., Ciaschini, V., Frohner, Á., Lorentey, K., Spataro,
F., et al. From gridmap-file to VOMS: managing authorization in a Grid
environment. Future Generation Computer Systems 21, 4 (2005), 549–558.

[31] Alzahrani, A., Janicke, H., and Abubaker, S. Decentralized XACML Overlay
Network. In Computer and Information Technology (CIT), 2010 IEEE 10th
International Conference on (June 2010), pp. 1032–1037.

[32] Ardagna, C., De Capitani di Vimercati, S., Foresti, S., Neven, G.,
Paraboschi, S., Preiss, F.-S., Samarati, P., and Verdicchio, M. Fine-Grained
Disclosure of Access Policies. 16–30.

[33] Ardagna, C., De Capitani di Vimercati, S., Neven, G., Paraboschi, S.,
Preiss, F.-S., Samarati, P., and Verdicchio, M. Enabling Privacy-preserving
Credential-based Access Control with XACML and SAML. In Computer and
Information Technology (CIT), 2010 IEEE 10th International Conference on (June
2010), pp. 1090–1095.

[34] Asghar, M., Ion, M., Russello, G., and Crispo, B. ESPOON: Enforcing
Encrypted Security Policies in Outsourced Environments. In Availability,
Reliability and Security (ARES), 2011 Sixth International Conference on (Aug
2011), pp. 99–108.

[35] Ashley, P., Hada, S., Karjoth, G., Powers, C., and Schunter, M. Enterprise
privacy authorization language (EPAL). Tech. rep., IBM, 2003.

[36] Bacon, J., Evans, D., Eyers, D. M., Migliavacca, M., Pietzuch, P., and
Shand, B. Enforcing End-to-end Application Security in the Cloud (Big Ideas
Paper). In Proceedings of the ACM/IFIP/USENIX 11th International Conference

http://selinuxproject.org/
https://www.iminds.be/en/projects/2015/03/11/sequoia
https://www.iminds.be/en/projects/2015/03/11/sequoia
http://projects.spring.io/spring-security/

206 BIBLIOGRAPHY

on Middleware, Middleware ’10. Springer-Verlag, Berlin, Heidelberg, 2010,
pp. 293–312.

[37] Bajaj, S., Box, D., Chappell, D., Curbera, F., Daniels, G., Hallam-Baker,
P., Hondo, M., Kaler, C., Langworthy, D., Malhotra, A., et al. Web
Services Policy Framework (WS-Policy) . http://docs.oasis-open.org/ws-sx/ws-
trust/200512/ws-trust-1.3-os.html, March 2006.

[38] Bajaj, S., Della-Libera, G., Dixon, B., Dusche, M., Hondo, M., Hur, M., Kaler,
C., Lockhart, H., Maruyama, H., Nadalin, A., et al. Web Services Federation
Language (WS-Federation). http://specs.xmlsoap.org/ws/2006/12/federation,
December 2006.

[39] Bates, A., Mood, B., Valafar, M., and Butler, K. Towards Secure Provenance-
based Access Control in Cloud Environments. In Proceedings of the Third ACM
Conference on Data and Application Security and Privacy (New York, NY, USA,
2013), CODASPY ’13, ACM, pp. 277–284.

[40] Bauer, L., Garriss, S., and Reiter, M. Distributed proving in access-control
systems. In Security and Privacy, 2005 IEEE Symposium on (May 2005), pp. 81–95.

[41] Bauer, L., Garriss, S., and Reiter, M. Efficient Proving for Practical
Distributed Access-Control Systems. In Computer Security - ESORICS 2007,
J. Biskup and J. Lopez, Eds., vol. 4734 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2007, pp. 19–37.

[42] Becker, M. Y., Fournet, C., and Gordon, A. D. SecPAL: Design and Semantics
of a Decentralized Authorization Language. J. Comput. Secur. 18, 4 (Dec. 2010),
619–665.

[43] Becker, M. Y., and Sewell, P. Cassandra: Flexible Trust Management, Applied
to Electronic Health Records. In Proceedings of the 17th IEEE Workshop on
Computer Security Foundations (Washington, DC, USA, 2004), CSFW ’04, IEEE
Computer Society, pp. 139–.

[44] Bell, D. E., and LaPadula, L. J. Secure computer systems: Mathematical
foundations. Tech. rep., DTIC Document, 1973.

[45] Bertino, E., Bonatti, P. A., and Ferrari, E. TRBAC: A Temporal Role-based
Access Control Model. ACM Trans. Inf. Syst. Secur. 4, 3 (Aug. 2001), 191–233.

[46] Bertino, E., Catania, B., Damiani, M. L., and Perlasca, P. GEO-RBAC: A
Spatially Aware RBAC. In Proceedings of the Tenth ACM Symposium on Access
Control Models and Technologies (New York, NY, USA, 2005), SACMAT ’05,
ACM, pp. 29–37.

BIBLIOGRAPHY 207

[47] Bezemer, C.-P., Zaidman, A., Platzbeecker, B., Hurkmans, T., and ’t Hart,
A. Enabling multi-tenancy: An industrial experience report. In Software
Maintenance (ICSM), 2010 IEEE International Conference on (Sept 2010), pp. 1–8.

[48] Beznosov, K. K. Flooding and recycling authorizations. In Proceedings of the
2005 workshop on New security paradigms (2005), ACM, pp. 67–72.

[49] Biba, K. J. Integrity considerations for secure computer systems. Tech. rep.,
DTIC Document, 1977.

[50] Blaze, M., Feigenbaum, J., and Lacy, J. Decentralized trust management. In
Security and Privacy, 1996. Proceedings., 1996 IEEE Symposium on (May 1996),
pp. 164–173.

[51] Boehm, O., Caumanns, J., Franke, M., and Pfaff, O. Federated Authentication
and Authorization: A Case Study. In Enterprise Distributed Object Computing
Conference, 2008. EDOC ’08. 12th International IEEE (Sept 2008), pp. 356–362.

[52] Bogaerts, J., Decat, M., Lagaisse, B., and Joosen, W. Entity-based access
control: supporting more expressive access control policies. In To be published
in the Proceedings of the 31th Annual Computer Security Applications Conference
(New York, NY, USA, 2015), ACSAC ’15, ACM.

[53] Bonatti, P., de Capitani di Vimercati, S., and Samarati, P. A Modular
Approach to Composing Access Control Policies. In Proceedings of the 7th ACM
Conference on Computer and Communications Security (New York, NY, USA,
2000), CCS ’00, ACM, pp. 164–173.

[54] Bonatti, P., De Capitani di Vimercati, S., and Samarati, P. An Algebra for
Composing Access Control Policies. ACM Trans. Inf. Syst. Secur. 5, 1 (Feb. 2002),
1–35.

[55] Borders, K., Zhao, X., and Prakash, A. CPOL: High-performance
Policy Evaluation. In Proceedings of the 12th ACM Conference on Computer
and Communications Security (New York, NY, USA, 2005), CCS ’05, ACM,
pp. 147–157.

[56] Brewer, D., and Nash, M. The Chinese Wall security policy. In IEEE Security
and Privacy (May 1989), pp. 206–214.

[57] Brossard, D. Using ALFA Eclipse plugin to author XACML policies -
Part 1. http://developers.axiomatics.com/blog/index/entry/
using-alfa-eclipse-plugin-to-author-xacml-policies-part-1.
html, February 2014.

[58] Brucker, A., and Petritsch, H. Idea: Efficient Evaluation of Access Control
Constraints. 157–165.

http://developers.axiomatics.com/blog/index/entry/using-alfa-eclipse-plugin-to-author-xacml-policies-part-1.html
http://developers.axiomatics.com/blog/index/entry/using-alfa-eclipse-plugin-to-author-xacml-policies-part-1.html
http://developers.axiomatics.com/blog/index/entry/using-alfa-eclipse-plugin-to-author-xacml-policies-part-1.html

208 BIBLIOGRAPHY

[59] Butler, B., Jennings, B., and Botvich, D. XACML Policy Performance
Evaluation Using a Flexible Load Testing Framework. In Proceedings of the 17th
ACM Conference on Computer and Communications Security (New York, NY,
USA, 2010), CCS ’10, ACM, pp. 648–650.

[60] Butler, B., Jennings, B., and Botvich, D. An experimental testbed to
predict the performance of XACML Policy Decision Points. In Integrated
Network Management (IM), 2011 IFIP/IEEE International Symposium on (May
2011), pp. 353–360.

[61] Carrie, D., and Gates, E. Access Control Requirements for Web 2.0 Security
and Privacy. In Proc. of Workshop on Web 2.0 Security & Privacy (W2SP 2007
(2007).

[62] Chadwick, D. Coordinated Decision Making in Distributed Applications. Inf.
Secur. Tech. Rep. 12, 3 (June 2007), 147–154.

[63] Chadwick, D., Su, L., Otenko, O., and Laborde, R. Coordination between
distributed PDPs. In IEEE POLICY (June 2006).

[64] Chadwick, D. W., and Otenko, A. The PERMIS X.509 Role Based Privilege
Management Infrastructure. 135–140.

[65] Chakraborty, S., and Ray, I. TrustBAC: integrating trust relationships into
the RBAC model for access control in open systems. In SACMAT (2006), ACM,
pp. 49–58.

[66] Cheng, Y., Park, J., and Sandhu, R. A User-to-User Relationship-Based Access
Control Model for Online Social Networks. In Data and Applications Security
and Privacy XXVI, N. Cuppens-Boulahia, F. Cuppens, and J. Garcia-Alfaro, Eds.,
vol. 7371 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2012,
pp. 8–24.

[67] Chong, F., and Carraro, G. Architecture strategies for catching the long tail.
MSDN Library, Microsoft Corporation (2006), 9–10.

[68] Cole, G. Service Provisioning Markup Language (SPML) Version 2.0. OASIS
Committee Specification (2006).

[69] Colombo, M., Lazouski, A., Martinelli, F., and Mori, P. A Proposal on
Enhancing XACML with Continuous Usage Control Features. 133–146.

[70] Colombo, M., Lazouski, A., Martinelli, F., and Mori, P. Access and Usage
Control in Grid Systems. In Handbook of Information and Communication
Security, P. Stavroulakis and M. Stamp, Eds. Springer Berlin Heidelberg, 2010,
pp. 293–308.

BIBLIOGRAPHY 209

[71] Commision, E. Directive 95/46/EC , 1995. Directive of the European Parliament
and of the Council of 24 Oct. 1995 on the protection of individuals with regard
to the processing of personal data and on the free movement of such data.

[72] Coulouris, G. F., Dollimore, J., and Kindberg, T. Distributed systems: concepts
and design. pearson education, 2005.

[73] Crampton, J. A reference monitor for workflow systems with constrained task
execution. In Proceedings of the Tenth ACM Symposium on Access Control Models
and Technologies (New York, NY, USA, 2005), SACMAT ’05, ACM, pp. 38–47.

[74] Crampton, J., and Huth, M. An Authorization Framework Resilient to Policy
Evaluation Failures. 472–487.

[75] Crampton, J., and Khambhammettu, H. Delegation in role-based access
control. International Journal of Information Security 7, 2 (2008), 123–136.

[76] Crampton, J., Leung, W., and Beznosov, K. The Secondary and Approximate
Authorization Model and Its Application to Bell-LaPadula Policies. In
Proceedings of the Eleventh ACM Symposium on Access Control Models and
Technologies (New York, NY, USA, 2006), SACMAT ’06, ACM, pp. 111–120.

[77] Crampton, J., and Morisset, C. PTaCL: A Language for Attribute-Based
Access Control in Open Systems. In Principles of Security and Trust, P. Degano
and J. Guttman, Eds., vol. 7215 of Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2012, pp. 390–409.

[78] Crampton, J., and Sellwood, J. Path Conditions and Principal Matching: A
New Approach to Access Control. In Proceedings of the 19th ACM Symposium
on Access Control Models and Technologies (New York, NY, USA, 2014), SACMAT
’14, ACM, pp. 187–198.

[79] Damianou, N., Dulay, N., Lupu, E., and Sloman, M. The Ponder Policy
Specification Language. 18–38.

[80] DeWin, B., Piessens, F., Joosen, W., and Verhanneman, T. On the importance
of the separation-of-concerns principle in secure software engineering. In
Proceedings of the ACSA Workshop on the Application of Engineering Principles
to System Security Design (2002).

[81] Decat, M., Bogaerts, J., Lagaisse, B., and Joosen, W. The e-document case
study: functional analysis and access control requirements. Technical report,
KU Leuven, 2014.

[82] Decat, M., Bogaerts, J., Lagaisse, B., and Joosen, W. The workforce
management case study: functional analysis and access control requirements.
Technical report, KU Leuven, 2014.

210 BIBLIOGRAPHY

[83] Decat, M., Bogaerts, J., Lagaisse, B., and Joosen, W. Amusa: Middleware
for Efficient Access Control Management of Multi-tenant SaaS Applications.
In Proceedings of the 30th Annual ACM Symposium on Applied Computing (New
York, NY, USA, 2015), SAC ’15, ACM.

[84] Decat, M., Lagaisse, B., and Joosen, W. Toward efficient and confidentiality-
aware federation of access control policies. InWorkshop on Middleware for Next
Generation Internet Computing (2012), ACM.

[85] Decat, M., Lagaisse, B., and Joosen, W. Middleware for efficient and
confidentiality-aware federation of access control policies. Journal of Internet
Services and Applications (2014).

[86] Decat, M., Lagaisse, B., and Joosen, W. Scalable and secure concurrent
evaluation of history-based access control policies. In To be published in the
Proceedings of the 31th Annual Computer Security Applications Conference (New
York, NY, USA, 2015), ACSAC ’15, ACM.

[87] Decat, M., Lagaisse, B., Joosen, W., and Crispo, B. Introducing Concurrency
in Policy-based Access Control. In Proceedings of the 8th Workshop on
Middleware for Next Generation Internet Computing (New York, NY, USA, 2013),
MW4NextGen ’13, ACM, pp. 3:1–3:6.

[88] Decat, M., Lagaisse, B., Van Landuyt, D., Crispo, B., and Joosen, W.
Federated Authorization for Software-as-a-Service Applications. In On the
Move to Meaningful Internet Systems: OTM 2013 Conferences, R. Meersman,
H. Panetto, T. Dillon, J. Eder, Z. Bellahsene, N. Ritter, P. De Leenheer, and
D. Dou, Eds., vol. 8185 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2013, pp. 342–359.

[89] Decat, M., Moeys, J., Lagaisse, B., and Joosen, W. Improving Reuse of
Attribute-Based Access Control Policies Using Policy Templates. In Engineering
Secure Software and Systems, F. Piessens, J. Caballero, and N. Bielova, Eds.,
vol. 8978 of Lecture Notes in Computer Science. Springer International Publishing,
2015, pp. 196–210.

[90] Decat, M., Van Landuyt, D., Lagaisse, B., and Joosen, W. On the need
for federated authorization in cross-organizational e-health platforms. In
Proceedings of the 8the international conference on Health Informatics (2014),
HealthInf 2015, pp. 540–546.

[91] Deng, M., Wuyts, K., Scandariato, R., Preneel, B., and Joosen, W. A privacy
threat analysis framework: supporting the elicitation and fulfillment of privacy
requirements. Requirements Engineering 16, 1 (2011), 3–32.

BIBLIOGRAPHY 211

[92] Dhankhar, V., Kaushik, S., Wijesekera, D., and Nerode, A. Evaluating
Distributed Xacml Policies. In Proceedings of the 2007 ACM Workshop on Secure
Web Services (New York, NY, USA, 2007), SWS ’07, ACM, pp. 99–110.

[93] di Vimercati, S. D. C., Foresti, S., Jajodia, S., Paraboschi, S., and Samarati,
P. A Data Outsourcing Architecture Combining Cryptography and Access
Control. In Proceedings of the 2007 ACM Workshop on Computer Security
Architecture (New York, NY, USA, 2007), CSAW ’07, ACM, pp. 63–69.

[94] Djordjevic, I., and Dimitrakos, T. A note on the anatomy of federation. BT
Technology Journal 23, 4 (2005), 89–106.

[95] Edjlali, G., Acharya, A., and Chaudhary, V. History-based Access Control
for Mobile Code. In Proceedings of the 5th ACM Conference on Computer and
Communications Security (New York, NY, USA, 1998), CCS ’98, ACM, pp. 38–48.

[96] El Kateb, D., Mouelhi, T., Le Traon, Y., Hwang, J., and Xie, T. Refactoring
Access Control Policies for Performance Improvement. In Proceedings of the
3rd ACM/SPEC International Conference on Performance Engineering (New York,
NY, USA, 2012), ICPE ’12, ACM, pp. 323–334.

[97] Elmasri, R. A., and Navathe, S. B. Fundamentals of Database Systems, 3rd ed.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[98] Erlingsson, Ú. The inlined reference monitor approach to security policy
enforcement. Tech. rep., Cornell University, 2004.

[99] Fatema, K., Chadwick, D., and Lievens, S. A Multi-privacy Policy
Enforcement System. In Privacy and Identity Management for Life, S. Fischer-
Hübner, P. Duquenoy, M. Hansen, R. Leenes, and G. Zhang, Eds., vol. 352 of
IFIP Advances in Information and Communication Technology. Springer Berlin
Heidelberg, 2011, pp. 297–310.

[100] Ferraiolo, D. F., Sandhu, R., Gavrila, S., Kuhn, D. R., and Chandramouli,
R. Proposed NIST Standard for Role-based Access Control. ACM Trans. Inf.
Syst. Secur. 4, 3 (Aug. 2001), 224–274.

[101] Filman, R., Elrad, T., Clarke, S., and Akşit, M. Aspect-oriented Software
Development, first ed. Addison-Wesley Professional, 2004.

[102] Fischer, J., Marino, D., Majumdar, R., and Millstein, T. Fine-Grained
Access Control with Object-Sensitive Roles. In ECOOP 2009 - Object-Oriented
Programming, S. Drossopoulou, Ed., vol. 5653 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2009, pp. 173–194.

212 BIBLIOGRAPHY

[103] Fisler, K., Krishnamurthi, S., Meyerovich, L. A., and Tschantz, M. C.
Verification and Change-impact Analysis of Access-control Policies. In
Proceedings of the 27th International Conference on Software Engineering (New
York, NY, USA, 2005), ICSE ’05, ACM, pp. 196–205.

[104] Fong, P. W. Relationship-based Access Control: Protection Model and
Policy Language. In Proceedings of the First ACM Conference on Data and
Application Security and Privacy (New York, NY, USA, 2011), CODASPY ’11,
ACM, pp. 191–202.

[105] Foster, I., Kesselman, C., Tsudik, G., and Tuecke, S. A Security Architecture
for Computational Grids. In Proceedings of the 5th ACM Conference on Computer
and Communications Security (New York, NY, USA, 1998), CCS ’98, ACM,
pp. 83–92.

[106] Foster, I., Kesselman, C., and Tuecke, S. The Anatomy of the Grid: Enabling
Scalable Virtual Organizations. Int. J. High Perform. Comput. Appl. 15, 3 (Aug.
2001), 200–222.

[107] Fotiou, N., Machas, A., Polyzos, G., and Xylomenos, G. Access control as a
service for the Cloud. Journal of Internet Services and Applications 6, 1 (2015).

[108] Freudenthal, E., Pesin, T., Port, L., Keenan, E., and Karamcheti, V. dRBAC:
distributed role-based access control for dynamic coalition environments. In
DSS (2002), pp. 411–420.

[109] Fuchs, L., Pernul, G., and Sandhu, R. Roles in information security - A survey
and classification of the research area. Computers & Security 30, 8 (2011), 748 –
769.

[110] Gama, P., Ribeiro, C., and Ferreira, P. A scalable history-based policy engine.
In Policies for Distributed Systems and Networks, 2006. Policy 2006. Seventh IEEE
International Workshop on (June 2006), pp. 10 pp.–112.

[111] Gay, R., Mantel, H., and Sprick, B. Service Automata. In Formal Aspects of
Security and Trust, G. Barthe, A. Datta, and S. Etalle, Eds., vol. 7140 of Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2012, pp. 148–163.

[112] Gentry, C. Fully homomorphic encryption using ideal lattices. In Proceedings
of the Forty-first Annual ACM Symposium on Theory of Computing (New York,
NY, USA, 2009), STOC ’09, ACM, pp. 169–178.

[113] Gheorghe, G., Crispo, B., Carbone, R., Desmet, L., and Joosen, W.
Deploy, Adjust and Readjust: Supporting Dynamic Reconfiguration of Policy
Enforcement. 350–369.

BIBLIOGRAPHY 213

[114] Giunchiglia, F., Crispo, B., and Zhang, R. Access control via lightweight
ontologies. In Semantic Computing (ICSC), 2011 Fifth IEEE International
Conference on (Sept 2011), pp. 352–355.

[115] Giunchiglia, F., Zhang, R., and Crispo, B. RelBAC: Relation Based Access
Control. In Semantics, Knowledge and Grid, 2008. SKG ’08. Fourth International
Conference on (Dec 2008), pp. 3–11.

[116] Giuri, L., and Iglio, P. Role Templates for Content-based Access Control. In
Proceedings of the Second ACM Workshop on Role-based Access Control (New
York, NY, USA, 1997), RBAC ’97, ACM, pp. 153–159.

[117] Godik, S., Moses, T., et al. eXtensible Access Control Markup Language
(XACML) 1.0. OASIS Standard (2003).

[118] Griffin, L., Butler, B., de Leastar, E., Jennings, B., and Botvich, D. On the
Performance of Access Control Policy Evaluation. In Policies for Distributed
Systems and Networks (POLICY), 2012 IEEE International Symposium on (July
2012), pp. 25–32.

[119] Guo, C. J., Sun, W., Huang, Y., Wang, Z. H., and Gao, B. A Framework
for Native Multi-Tenancy Application Development and Management. In
E-Commerce Technology and the 4th IEEE International Conference on Enterprise
Computing, E-Commerce, and E-Services, 2007. CEC/EEE 2007. The 9th IEEE
International Conference on (July 2007), pp. 551–558.

[120] Hachem, S., Toninelli, A., Pathak, A., and Issarny, V. Policy-Based Access
Control in Mobile Social Ecosystems. In Policies for Distributed Systems
and Networks (POLICY), 2011 IEEE International Symposium on (June 2011),
pp. 57–64.

[121] Han, W., and Lei, C. A Survey on Policy Languages in Network and Security
Management. Comput. Netw. 56, 1 (Jan. 2012), 477–489.

[122] Hardt, D. The OAuth 2.0 authorization framework.

[123] Hu, V., Ferraiolo, D., Kuhn, R., Schnitzer, A., Sandlin, K., Miller, R., and
Scarfone, K. Guide to Attribute Based Access Control (ABAC) Definition and
Considerations. NIST Special Publication (2014).

[124] Jahid, S., Gunter, C. A., Hoqe, I., and Okhravi, H. MyABDAC: Compiling
XACML Policies for Attribute-based Database Access Control. In Proceedings
of the First ACM Conference on Data and Application Security and Privacy (New
York, NY, USA, 2011), CODASPY ’11, ACM, pp. 97–108.

214 BIBLIOGRAPHY

[125] Janicke, H., Cau, A., Siewe, F., and Zedan, H. Concurrent Enforcement of
Usage Control Policies. In Policies for Distributed Systems and Networks, 2008.
POLICY 2008. IEEE Workshop on (June 2008), pp. 111–118.

[126] Jie, W., Arshad, J., Sinnott, R., Townend, P., and Lei, Z. A Review of Grid
Authentication and Authorization Technologies and Support for Federated
Access Control. ACM Comput. Surv. 43, 2 (Feb. 2011), 12:1–12:26.

[127] Jin, X., Krishnan, R., and Sandhu, R. A Unified Attribute-Based Access
Control Model Covering DAC, MAC and RBAC. In Data and Applications
Security and Privacy XXVI, N. Cuppens-Boulahia, F. Cuppens, and J. Garcia-
Alfaro, Eds., vol. 7371 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2012, pp. 41–55.

[128] Jin, X., Sandhu, R., and Krishnan, R. RABAC: Role-Centric Attribute-Based
Access Control. In Computer Network Security, I. Kotenko and V. Skormin, Eds.,
vol. 7531 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2012,
pp. 84–96.

[129] Karjoth, G. Access Control with IBM Tivoli Access Manager. ACM Trans. Inf.
Syst. Secur. 6, 2 (May 2003), 232–257.

[130] Kelbert, F., and Pretschner, A. A Fully Decentralized Data Usage Control
Enforcement Infrastructure. In To appear in Proc. 13th International Conference
on Applied Cryptography and Network Security (ACNS). 2015.

[131] Kini, P., and Beznosov, K. Speculative Authorization. Parallel and Distributed
Systems, IEEE Transactions on 24, 4 (April 2013), 814–824.

[132] Kohler, M., Brucker, A., and Schaad, A. ProActive Caching: Generating
Caching Heuristics for Business Process Environments. In Computational
Science and Engineering, 2009. CSE ’09. International Conference on (Aug 2009),
vol. 3, pp. 297–304.

[133] Kohler, M., and Brucker, A. D. Access Control Caching Strategies: An
Empirical Evaluation. In Proceedings of the 6th International Workshop on
Security Measurements and Metrics (New York, NY, USA, 2010), MetriSec ’10,
ACM, pp. 8:1–8:8.

[134] Kohler, M., and Schaad, A. Proactive access control for business process-
driven environments. In 2008 Annual Computer Security Applications Conference
(2008), IEEE, pp. 153–162.

[135] Kolovski, V., Hendler, J., and Parsia, B. Analyzing Web Access Control
Policies. In Proceedings of the 16th International Conference on World Wide Web
(New York, NY, USA, 2007), WWW ’07, ACM, pp. 677–686.

BIBLIOGRAPHY 215

[136] Komlenovic, M., Tripunitara, M., and Zitouni, T. An Empirical Assessment
of Approaches to Distributed Enforcement in Role-based Access Control
(RBAC). In Proceedings of the First ACM Conference on Data and Application
Security and Privacy (New York, NY, USA, 2011), CODASPY ’11, ACM,
pp. 121–132.

[137] Kremer, S., Markowitch, O., and Zhou, J. An Intensive Survey of Fair
Non-repudiation Protocols. Comput. Commun. 25, 17 (Nov. 2002), 1606–1621.

[138] Kuhlmann, M., Shohat, D., and Schimpf, G. Role Mining - Revealing
Business Roles for Security Administration Using Data Mining Technology.
In Proceedings of the Eighth ACM Symposium on Access Control Models and
Technologies (New York, NY, USA, 2003), SACMAT ’03, ACM, pp. 179–186.

[139] Kuhn, D. R., Coyne, E. J., and Weil, T. R. Adding attributes to role-based
access control. Computer, 6 (2010), 79–81.

[140] Kumar, V., Cooper, B., Eisenhauer, G., and Schwan, K. iManage: Policy-
Driven Self-management for Enterprise-Scale Systems. In Middleware 2007
(2007), R. Cerqueira and R. Campbell, Eds., vol. 4834 of Lecture Notes in Computer
Science, Springer Berlin Heidelberg, pp. 287–307.

[141] Lagaisse, B., Joosen, W., and DeWin, B. Managing semantic interference with
aspect integration contracts. In International Workshop on Software-Engineering
Properties of Languages for Aspect Technologies (SPLAT) (2004).

[142] Lampson, B. W. Protection. SIGOPS Oper. Syst. Rev. 8 (January 1974), 18–24.

[143] Latham, D. Department of Defense Trusted Computer System Evaluation
Criteria. Tech. rep., US Department of Defense, 1985.

[144] Lawrence, K., Kaler, C., Nadalin, A., Monzillo, R., and Hallam-Baker, P.
Web Services Security: SOAP Message Security 1.1 (WS-Security), 2006.

[145] Lazouski, A., Mancini, G., Martinelli, F., andMori, P. Usage control in cloud
systems. In Internet Technology And Secured Transactions, 2012 International
Conference for (Dec 2012), pp. 202–207.

[146] Lazouski, A., Martinelli, F., andMori, P. Usage control in computer security:
A survey. Computer Science Review 4, 2 (2010), 81 – 99.

[147] Lepro, R. Cardea: Dynamic access control in distributed systems. SYSTEM 3, 4
(2003).

[148] Li, N., Wang, Q., Qardaji, W., Bertino, E., Rao, P., Lobo, J., and Lin, D.
Access Control Policy Combining: Theory Meets Practice. In Proceedings of the
14th ACM Symposium on Access Control Models and Technologies (New York,
NY, USA, 2009), SACMAT ’09, ACM, pp. 135–144.

216 BIBLIOGRAPHY

[149] Lin, D., Rao, P., Bertino, E., Li, N., and Lobo, J. Policy Decomposition for
Collaborative Access Control. In Proceedings of the 13th ACM Symposium on
Access Control Models and Technologies (New York, NY, USA, 2008), SACMAT
’08, ACM, pp. 103–112.

[150] Lischka, M., Endo, Y., and Sánchez Cuenca, M. Deductive Policies with
XACML. In Proceedings of the 2009 ACMWorkshop on Secure Web Services (New
York, NY, USA, 2009), SWS ’09, ACM, pp. 37–44.

[151] Liu, A., Chen, F., Hwang, J., and Xie, T. Designing Fast and Scalable XACML
Policy Evaluation Engines. Computers, IEEE Transactions on 60, 12 (Dec 2011),
1802–1817.

[152] Liu, A. X., Chen, F., Hwang, J., and Xie, T. Xengine: A Fast and Scalable
XACML Policy Evaluation Engine. In Proceedings of the 2008 ACM SIGMETRICS
International Conference on Measurement and Modeling of Computer Systems
(New York, NY, USA, 2008), SIGMETRICS ’08, ACM, pp. 265–276.

[153] Lobo, J., Ma, J., Russo, A., Lupu, E., Calo, S., and Sloman, M. Refinement of
History-Based Policies. In Logic Programming, Knowledge Representation, and
Nonmonotonic Reasoning, M. Balduccini and T. Son, Eds., vol. 6565 of Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2011, pp. 280–299.

[154] Lockhart, H., Parducci, B., and Rissanen, E. SAML 2.0 Profile of XACML,
Version 2.0.

[155] Lodderstedt, T., Basin, D., and Doser, J. SecureUML: A UML-BasedModeling
Language for Model-Driven Security. In UML 2002 - The Unified Modeling
Language, J.-M. Jézéquel, H. Hussmann, and S. Cook, Eds., vol. 2460 of Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2002, pp. 426–441.

[156] Lorch, M., Adams, D. B., Kafura, D., Koneni, M. S. R., Rathi, A., and Shah, S.
The PRIMA System for Privilege Management, Authorization and Enforcement
in Grid Environments. In Proceedings of the 4th International Workshop on Grid
Computing (Washington, DC, USA, 2003), GRID ’03, IEEE Computer Society,
pp. 109–.

[157] Lorch, M., Proctor, S., Lepro, R., Kafura, D., and Shah, S. First Experiences
Using XACML for Access Control in Distributed Systems. In Proceedings of the
2003 ACM Workshop on XML Security (New York, NY, USA, 2003), XMLSEC ’03,
ACM, pp. 25–37.

[158] Marouf, S., Shehab, M., Sqicciarini, A., and Sundareswaran, S. Statistics
& Clustering Based Framework for Efficient XACML Policy Evaluation.
In Policies for Distributed Systems and Networks, 2009. POLICY 2009. IEEE
International Symposium on (July 2009), pp. 118–125.

BIBLIOGRAPHY 217

[159] Marouf, S., Shehab, M., Sqicciarini, A., and Sundareswaran, S. Adaptive
Reordering and Clustering-Based Framework for Efficient XACML Policy
Evaluation. Services Computing, IEEE Transactions on 4, 4 (Oct 2011), 300–313.

[160] Mazzoleni, P., Crispo, B., Sivasubramanian, S., and Bertino, E. XACML
Policy Integration Algorithms. ACM Trans. Inf. Syst. Secur. 11, 1 (Feb. 2008),
4:1–4:29.

[161] Mell, P., and Grance, T. The NIST definition of cloud computing.

[162] Minami, K., and Kotz, D. Secure context-sensitive authorization. Pervasive
and Mobile Computing 1, 1 (2005), 123 – 156.

[163] Minami, K., and Kotz, D. Scalability in a Secure Distributed Proof System.
In Pervasive Computing, K. Fishkin, B. Schiele, P. Nixon, and A. Quigley, Eds.,
vol. 3968 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2006,
pp. 220–237.

[164] Miseldine, P. L. Automated XACML Policy Reconfiguration for Evaluation
Optimisation. In Proceedings of the Fourth International Workshop on Software
Engineering for Secure Systems (New York, NY, USA, 2008), SESS ’08, ACM,
pp. 1–8.

[165] Moses, T., et al. eXtensible Access Control Markup Language (XACML) 2.0.
OASIS Standard (2005).

[166] Muthukumaran, D., Jaeger, T., and Ganapathy, V. Leveraging ”Choice”
to Automate Authorization Hook Placement. In Proceedings of the 2012 ACM
Conference on Computer and Communications Security (New York, NY, USA,
2012), CCS ’12, ACM, pp. 145–156.

[167] Nadalin, A., Goodner, M., Gudgin, M., Barbir, A., and Granqvist,
H. WS-Trust 1.3. http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-
1.3-os.html, Maart 2007.

[168] Neuman, B., and Ts’o, T. Kerberos: an authentication service for computer
networks. Communications Magazine, IEEE 32, 9 (Sept 1994), 33–38.

[169] Nguyen, D., Park, J., and Sandhu, R. A provenance-based access control
model for dynamic separation of duties. In Privacy, Security and Trust (PST),
2013 Eleventh Annual International Conference on (July 2013), pp. 247–256.

[170] Park, J., Nguyen, D., and Sandhu, R. A provenance-based access control
model. In Privacy, Security and Trust (PST), 2012 Tenth Annual International
Conference on (July 2012), pp. 137–144.

218 BIBLIOGRAPHY

[171] Park, J., and Sandhu, R. The UCONABC Usage Control Model. ACM Trans.
Inf. Syst. Secur. 7, 1 (Feb. 2004), 128–174.

[172] Parnas, D. L. On the Criteria to Be Used in Decomposing Systems into Modules.
Commun. ACM 15, 12 (Dec. 1972), 1053–1058.

[173] Pearlman, L., Welch, V., Foster, I., Kesselman, C., and Tuecke, S.
A community authorization service for group collaboration. In Policies
for Distributed Systems and Networks, 2002. Proceedings. Third International
Workshop on (2002), pp. 50–59.

[174] Pina Ros, S., Lischka, M., and Gómez Mármol, F. Graph-based XACML
Evaluation. In Proceedings of the 17th ACM Symposium on Access Control Models
and Technologies (New York, NY, USA, 2012), SACMAT ’12, ACM, pp. 83–92.

[175] Poortinga-van Wijnen, R., Hulsebosch, B., Reitsma, J., and Wegdam, M.
Federated Authorisation and Group Management in e-Science.

[176] Rao, P., Lin, D., Bertino, E., Li, N., and Lobo, J. An Algebra for Fine-grained
Integration of XACML Policies. In Proceedings of the 14th ACM Symposium on
Access Control Models and Technologies (New York, NY, USA, 2009), SACMAT
’09, ACM, pp. 63–72.

[177] Ribeiro, C., Zúqete, A., Ferreira, P., and Guedes, P. SPL: An access control
language for security policies with complex constraints. In In Proceedings of
the Network and Distributed System Security Symposium (1999), pp. 89–107.

[178] Rizvi, S., Mendelzon, A., Sudarshan, S., and Roy, P. Extending Query
Rewriting Techniques for Fine-grained Access Control. In Proceedings of the
2004 ACM SIGMOD International Conference on Management of Data (New York,
NY, USA, 2004), SIGMOD ’04, ACM, pp. 551–562.

[179] Sabelfeld, A., and Myers, A. Language-based information-flow security.
Selected Areas in Communications, IEEE Journal on 21, 1 (Jan 2003), 5–19.

[180] Sakimura, N., Bradley, J., Jones, M., de Medeiros, B., and Mortimore, C.
Openid connect core 1.0. The OpenID Foundation (2014), S3.

[181] Samarati, P., and de Vimercati, S. Access Control: Policies, Models, and
Mechanisms. In Foundations of Security Analysis and Design, R. Focardi and
R. Gorrieri, Eds., vol. 2171 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2001, pp. 137–196.

[182] Sandhu, R. The Authorization Leap from Rights to Attributes: Maturation or
Chaos? SACMAT ’12, ACM, pp. 69–70.

BIBLIOGRAPHY 219

[183] Sandhu, R., Bhamidipati, V., and Munawer, Q. The ARBAC97 Model for
Role-based Administration of Roles. ACM Trans. Inf. Syst. Secur. 2, 1 (Feb. 1999),
105–135.

[184] Sandhu, R., and Park, J. Usage Control: A Vision for Next Generation
Access Control. In Computer Network Security, V. Gorodetsky, L. Popyack, and
V. Skormin, Eds., vol. 2776 of Lecture Notes in Computer Science. Springer Berlin
/ Heidelberg, 2003, pp. 17–31. 10.1007/978-3-540-45215-7_2.

[185] Schaad, A., Moffett, J., and Jacob, J. The role-based access control system of
a european bank: A case study and discussion. In Proceedings of the Sixth ACM
Symposium on Access Control Models and Technologies (New York, NY, USA,
2001), SACMAT ’01, ACM, pp. 3–9.

[186] Schneider, F. B. Enforceable Security Policies. ACM Trans. Inf. Syst. Secur. 3, 1
(Feb. 2000), 30–50.

[187] Senk, C. Adoption of security as a service. Journal of Internet Services and
Applications 4, 1 (2013).

[188] Shi, L., and Chadwick, D. W. A Controlled Natural Language Interface for
Authoring Access Control Policies. In Proceedings of the 2011 ACM Symposium
on Applied Computing (New York, NY, USA, 2011), SAC ’11, ACM, pp. 1524–1530.

[189] Sinnott, R., Chadwick, D., Doherty, T., Martin, D., Stell, A., Stewart,
G., Su, L., and Watt, J. Advanced Security for Virtual Organizations: The
Pros and Cons of Centralized vs Decentralized Security Models. In Cluster
Computing and the Grid, 2008. CCGRID ’08. 8th IEEE International Symposium
on (May 2008), pp. 106–113.

[190] Sloman, M. Policy driven management for distributed systems. Journal of
Network and Systems Management 2, 4 (1994), 333–360.

[191] Solo, D., Housley, R., and Ford, W. Internet X.509 public key infrastructure
certificate and CRL profile.

[192] Sterne, D. On the buzzword ‘security policy’. In Research in Security and
Privacy, 1991. Proceedings., 1991 IEEE Computer Society Symposium on (May
1991), pp. 219–230.

[193] Stihler, M., Santin, A., Calsavara, A., and Marcon, A. Distributed Usage
Control Architecture for Business Coalitions. In Communications, 2009. ICC
’09. IEEE International Conference on (June 2009), pp. 1–6.

[194] Su, L., Chadwick, D., Basden, A., and Cunningham, J. Automated
decomposition of access control policies. In Policies for Distributed Systems and
Networks, 2005. Sixth IEEE International Workshop on (June 2005), pp. 3–13.

220 BIBLIOGRAPHY

[195] Sun, W., Zhang, X., Guo, C. J., Sun, P., and Su, H. Software as a Service:
Configuration and Customization Perspectives. In Congress on Services Part II,
2008. SERVICES-2. IEEE (Sept 2008), pp. 18–25.

[196] Tang, B., Sandhu, R., and Li, Q. Multi-tenancy authorization models for
collaborative cloud services. In Collaboration Technologies and Systems (CTS),
2013 International Conference on (May 2013), pp. 132–138.

[197] Thompson, M., Essiari, A., Keahey, K., Welch, V., Lang, S., and Liu, B.
Fine-Grained Authorization for Job and Resource Management Using Akenti
and the Globus Toolkit. Arxiv preprint cs/0306070 (2003).

[198] Tripunitara, M. V., and Carbunar, B. Efficient Access Enforcement in
Distributed Role-based Access Control (RBAC) Deployments. In Proceedings of
the 14th ACM Symposium on Access Control Models and Technologies (New York,
NY, USA, 2009), SACMAT ’09, ACM, pp. 155–164.

[199] Tsankov, P., Marinovic, S., Torabi D., M., and Basin, D. Fail-Secure Access
Control. In ACM CCS (2014), pp. 1157–1168.

[200] Turkmen, F., and Crispo, B. Performance Evaluation of XACML PDP
Implementations. In Proceedings of the 2008 ACM Workshop on Secure Web
Services (New York, NY, USA, 2008), SWS ’08, ACM, pp. 37–44.

[201] Verhanneman, T., Piessens, F., Win, B., and Joosen, W. Uniform application-
level access control enforcement of organizationwide policies. In Computer
Security Applications Conference, 21st Annual (Dec 2005), pp. 10 pp.–440.

[202] Walraven, S., Lagaisse, B., Truyen, E., and Joosen, W. Policy-driven
customization of cross-organizational features in distributed service systems.
Software: Practice and Experience 43, 10 (2013), 1145–1163.

[203] Wei, Q. Towards improving the availability and performance of enterprise
authorization systems. PhD thesis, University of British Columbia, 2009.

[204] Wei, Q., Crampton, J., Beznosov, K., and Ripeanu, M. Authorization Recycling
in RBAC Systems. In Proceedings of the 13th ACM Symposium on Access
Control Models and Technologies (New York, NY, USA, 2008), SACMAT ’08,
ACM, pp. 63–72.

[205] Wei, Q., Ripeanu, M., and Beznosov, K. Cooperative Secondary Authorization
Recycling. Parallel and Distributed Systems, IEEE Transactions on 20, 2 (Feb
2009), 275–288.

[206] Weil, S. A., Brandt, S. A., Miller, E. L., Long, D. D. E., and Maltzahn, C.
Ceph: A Scalable, High-performance Distributed File System. In Proceedings of

BIBLIOGRAPHY 221

the 7th Symposium on Operating Systems Design and Implementation (Berkeley,
CA, USA, 2006), OSDI ’06, USENIX Association, pp. 307–320.

[207] Welch, V., Barton, T., Keahey, K., and Siebenlist, F. Attributes, Anonymity,
and Access: Shibboleth and Globus Integration to Facilitate Grid Collaboration.
In In 4th Annual PKI R&D Workshop (To appear (2005).

[208] Welch, V., Siebenlist, F., Foster, I., Bresnahan, J., Czajkowski, K., Gawor,
J., Kesselman, C., Meder, S., Pearlman, L., and Tuecke, S. Security for grid
services. In High Performance Distributed Computing, 2003. Proceedings. 12th
IEEE International Symposium on (June 2003), pp. 48–57.

[209] Westerinen, A., Schnizlein, J., Strassner, J., Scherling, M., Quinn, B.,
Herzog, S., Huynh, A., Carlson, M., Perry, J., and Waldbusser, S. RFC
3198 - Terminology for Policy-Based Management. The Internet Society, Network
Working Group (2001).

[210] Winsborough, W., Seamons, K., and Jones, V. Automated trust negotiation.
In DARPA Information Survivability Conference and Exposition, 2000. DISCEX
’00. Proceedings (2000), vol. 1, pp. 88–102 vol.1.

[211] Wun, A., and Jacobsen, H.-A. A Policy Management Framework for Content-
based Publish/SubscribeMiddleware. In Proceedings of the 8th ACM/IFIP/USENIX
International Conference on Middleware, MIDDLEWARE2007. Springer-Verlag,
Berlin, Heidelberg, 2007, pp. 368–388.

[212] Yuan, E., and Tong, J. Attributed based access control (ABAC) forWeb services.
InWeb Services, 2005. ICWS 2005. Proceedings. 2005 IEEE International Conference
on (July 2005).

[213] Zhang, X., Nakae, M., Covington, M. J., and Sandhu, R. Toward a Usage-
Based Security Framework for Collaborative Computing Systems. ACM Trans.
Inf. Syst. Secur. 11, 1 (Feb. 2008), 3:1–3:36.

List of publications

Journal papers

2014 M. Decat, B. Lagaisse andW. Joosen, Middleware for efficient and confidentiality-
aware federation of access control policies, in Journal of Internet Services and
Applications, February 2014

International conference papers

2015 M. Decat, B. Lagaisse and W. Joosen, Scalable and secure concurrent evaluation
of history-based access control policies, in Proceedings of the 31th Annual
Computer Security Applications Conference (ACSAC), December 2015

2015 J. Bogaerts, M. Decat, B. Lagaisse and W. Joosen, Entity-based access control:
supporting more expressive access control policies, in Proceedings of the 31th
Annual Computer Security Applications Conference (ACSAC), December 2015

2015 M. Decat, J. Bogaerts, B. Lagaisse and W. Joosen, Amusa: middleware for
efficient access control management of multi-tenant SaaS applications, in
Proceedings of the 30th Annual ACM Symposium on Applied Computing (SAC),
April 2015

2015 M. Decat, J. Moeys, B. Lagaisse and W. Joosen, Improving reuse of attribute-
based access control policies using policy templates, in Proceedings of the 7th
International Symposium on Engineering Secure Software and Systems (ESSOS),
March 2015

2015 M. Decat, D. Van Landuyt, B. Lagaisse and W. Joosen, On the need for federated
authorization in cross-organizational e-health platforms, in Proceedings of the
8the international conference on Health Informatics (HEALTHINF), January
2015

223

224 LIST OF PUBLICATIONS

2014 P.Maenhaut, H.Moens, M. Decat, J. Bogaerts, B. Lagaisse, W. Joosen, V. Ongenae
and F. De Turck, Characterizing the performance of tenant data management
in multi-tenant cloud authorization systems, in Network Operations and
Management Symposium (NOMS), May 2014

2013 M. Decat, B. Lagaisse, D. Van Landuyt, B. Crispo and W. Joosen, Federated
authorization for Software-as-a-Service applications, in On the Move to
Meaningful Internet Systems: OTM 2013 Conferences, September 2013

2010 P. De Ryck, M. Decat, L. Desmet, F. Piessens,W. Joosen, Security of webmashups:
a survey, in Proceedings of the 15th Nordic Conference on Secure IT Systems
(NordSec), October 2010

2010 M. Decat, P. De Ryck, L. Desmet, F. Piessens and W. Joosen, Towards building
secure web mashups, in OWASP AppSec Research 2010, June 2010

International workshop papers

2013 M. Decat, B. Lagaisse, W. Joosen and B. Crispo, Introducing concurrency in
policy-based access control, in Proceedings of the 8th Workshop on Middleware
for Next Generation Internet Computing (MW4NG), December 2013

2012 M. Decat, B. Lagaisse and W. Joosen, Toward efficient and confidentiality-aware
federation of access control policies, in Proceedings of the 7th Workshop on
Middleware for Next Generation Internet Computing(MW4NG), December 2012

Technical reports

2014 M. Decat, J. Bogaerts, B. Lagaisse and W. Joosen, The e-document case
study: functional analysis and access control requirements, volume CW654,
Department of Computer Science, KU Leuven, February 2014

2014 M. Decat, J. Bogaerts, B. Lagaisse and W. Joosen, The workforce management
case study: functional analysis and access control requirements, volume CW655,
Department of Computer Science, KU Leuven, February 2014

Book chapters

2014 A. Pathak, G. Rosca, V. Issarny, M. Decat and B. Lagaisse, Privacy and access
control in federated social networks, in Engineering Secure Future Internet
Services and Systems, pages 160-179, Springer International Publishing, 2014

FACULTY OF ENGINEERING SCIENCE
DEPARTMENT OF COMPUTER SCIENCE

IMINDS-DISTRINET
Celestijnenlaan 200A box 2402

B-3001 Heverlee
http://www.cs.kuleuven.be

	Contents
	List of Figures
	List of Tables
	Introduction
	Access control and Software as a Service
	Access control
	Software as a Service
	The need for security and access control in SaaS

	Challenges for access control in SaaS
	Functional challenges
	Non-functional challenges
	Additional concerns

	Goals of this thesis
	Research approach
	Case studies
	Supporting technologies
	Research prototypes

	Contributions
	Outline

	Background
	Access control
	Access control models
	The basics: the access control matrix
	Who can assign permissions
	How permissions are assigned
	Beyond permissions: executing operations with an access decision

	Policy-based access control
	Policy languages
	The reference architecture for policy-based access control systems

	Federated access control
	Early techniques for federated access control: Kerberos and the Public Key Infrastructure
	Access control in grid computing
	Federated access control in web applications

	Performance of policy-based access control
	Positioning of our contributions
	Conclusion

	Amusa: access control in a multi-tenant context
	Introduction
	Problem statement
	Industrial case studies
	Problem illustration
	Resulting requirements

	The Amusa middleware
	Enabling technologies
	Amusa's access control management
	The middleware architecture of Amusa
	How to integrate Amusa in an application

	Evaluation
	Security
	Performance
	Integration effort

	Discussion
	Related work
	Conclusion

	Federated authorization
	Introduction
	Motivation and problem illustration
	Case study: a patient monitoring service
	Resulting access control requirements
	The need for federation authorization

	Federated authorization
	Key features for supporting federated authorization
	Generic middleware architecture
	Extensions to current policy languages

	Performance evaluation
	Test setup
	Results

	Discussion
	Trust implications
	Security implications
	Privacy implications
	Performance

	Validation of federated authorization in a wider context
	Case study: a collaborative care platform
	Access control requirements
	The role of federated authorization

	Outlook
	Conclusion

	Efficient federated evaluation of access control policies
	Introduction
	Case study analysis: home patient monitoring
	Summary of the case study
	Access control policies from the case study
	Problem statement and solution

	Policy model
	Structure of a policy tree
	Evaluation of a policy tree

	Policy federation algorithm
	Overview
	Step 1: Normalization
	Step 2: Decomposition
	Step 3: Combination
	Discussion: policy equivalence

	Performance evaluation
	Middleware prototype
	Test set-up
	Results

	Discussion
	Related work
	Conclusion

	Concurrent evaluation of access control policies
	Introduction
	Problem elaboration
	The need for concurrency and distribution
	The need for concurrency control
	The need for concurrency control at the level of policy evaluation
	Requirements for concurrency control

	Concurrency control
	Modeling history-based policies in current policy languages
	Tactics for concurrency control
	Centralized coordinator
	Distributed coordinator
	Scaling out the attribute database

	Evaluation
	Prototype and test set-up
	Latency overhead
	The impact of conflicts
	Scalability

	Discussion
	Conclusion

	Conclusion
	Contributions
	Revisiting the challenges for SaaS access control
	Future directions for policy-based access control
	Investigating the semantical interface between policies and applications
	Applying policies to database queries
	Supporting tools and technologies
	The link between authorization and audit
	The complete picture: a view on policy-based access control

	Concluding thoughts

	Example of an access control policy
	Extensions to XACML for federated authorization
	Remote Policy Reference
	Obligation targets

	Correctness of the policy transformations of Chapter 5
	Combination algorithms
	PermitOverrides
	DenyOverrides
	FirstApplicable

	Truth tables of the policy transformations
	Transformation T1
	Transformation T2
	Transformation T3
	Transformation T4
	Transformation T5
	Transformation T6
	Transformation T7
	Transformation T8

	Overview of the developed prototypes
	Bibliography

